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ABSTRACT
Mobile devices have become an increasingly ubiquitous part of our
everyday life. We use mobile services to perform a broad range of
tasks (e.g. booking travel or office work), leading to often lengthy
interactions within distinct apps and services. Existing mobile sys-
tems handle mostly simple user needs, where a single app is taken
as the unit of interaction. To understand users’ expectations and
to provide context-aware services, it is important to model users’
interactions in the task space. In this work, we first propose and
evaluate a method for the automated segmentation of users’ app
usage logs into task units. We focus on two problems: (i) given
a sequential pair of app usage logs, identify if there exists a task
boundary, and (ii) given any pair of two app usage logs, identify
if they belong to the same task. We model these as classification
problems that use features from three aspects of app usage patterns:
temporal, similarity, and log sequence. Our classifiers improve on
traditional timeout segmentation, achieving over 89% performance
for both problems. Secondly, we use our best task classifier on a
large-scale data set of commercial mobile app usage logs to identify
common tasks. We observe that users’ performed common tasks
ranging from regular information checking to entertainment and
booking dinner. Our proposed task identification approach provides
the means to evaluate mobile services and applications with respect
to task completion.

CCS CONCEPTS
• Information systems→Mobile informationprocessing sys-
tems; • Human-centered computing → Ubiquitous and mo-
bile computing systems and tools.
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1 INTRODUCTION
Mobile devices are increasingly used to simplify the accomplish-
ment of various everyday activities [4, 5]. Users’ mobile needs span
a broad spectrum: simple needs, such as weather information check-
ing, can mostly be satisfied via a single app; but users may also
access a series of apps, collect, filter, and synthesize information
from multiple sources to solve a complex task, e.g., planning a va-
cation. Helping users complete tasks [18] is crucial for a number of
applications, such as search systems, digital assistants, and produc-
tivity applications. However, little research has explored methods
to understand and identify mobile tasks, let alone to support users
in task continuation and task completion.

A primary mechanism for segmenting logged app usage streams
is session-based, where short inactivity timeouts (30 or 45 seconds)
between user actions are applied as a means to demarcate session
boundaries [35]. However, tasks with users’ high-level intentions
may span multiple sessions and involve different apps, where the
empirically-set short timeout threshold may not be a valid criterion.

Consider a hypothetical example of a mobile task of a single user
shown in Table 1. The logs are automatically segmented into ses-
sions (defined as a series of consecutive app usage without standby
over a time threshold) using the 45-second inactivity threshold [35].
They are then manually annotated into tasks with the correspond-
ing task ID. We can observe that Task 1 crosses four sessions and it
is interleaved with Task 2 and Task 3. To plan dinner with friends,
the user first chats with friends on WhatsApp, and then access
Yelp to look for restaurants and book a table. The user may switch
between Yelp andWhatsApp to get confirmation with friends about
which restaurant they prefer to go to. Finally, the user copies the
restaurant address from Yelp to Google Maps to check where the
restaurant is, and then book a ride on Uber. This series of log ac-
tivities suggest that these interactions belong to the same task,
spanning across multiple sessions and that not all apps are used
consecutively (interleaved with other tasks). During these types
of complex mobile tasks, users always need to access and switch
between different apps frequently, as well as searching and editing
a similar text more than once. If we could understand users’ tasks
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Table 1: An example of mobile task: planning dinner with
friends.

Timestamp App SessionID TaskID Task Description
18 Jan. 2014 17:49:45 WhatsApp 1 1 Dinning with friends
18 Jan. 2014 17:50:10 Yelp 1 1
18 Jan. 2014 17:52:15 WhatsApp 2 1
18 Jan. 2014 17:57:10 Music 3 2 listen to music
18 Jan. 2014 18:04:22 Facebook 4 3 Social
18 Jan. 2014 18:05:01 Instagram 4 3
18 Jan. 2014 18:10:50 Yelp 5 1
18 Jan. 2014 18:11:10 Google Maps 5 1
18 Jan. 2014 18:11:43 Uber 5 1
18 Jan. 2014 18:13:54 WhatsApp 6 1

in advance, these redundant operations could be optimized. Fur-
thermore, if we were able to accurately identify sets of app usage
with the same intent, we will be in a better position to evaluate the
performance of mobile services from the user’s point of view.

To this end, we first annotated week-long app usage logs of 20
users into tasks. We report on the properties of these annotated
mobile tasks, learning that 22.6% of all the tasks are interleaved
and 19.7% of tasks contain multiple different apps. This suggests
that mobile task extraction is not a trivial problem. We then built
classifiers to identify task boundaries between each sequential pair
of app usage, as well as arbitrary pairs of logs that correspond to
the same task, despite being interleaved with apps usage from other
tasks. Given that understanding of mobile tasks of a small-scale
lab study is limited, and manual labeling of a large-scale data set
is infeasible, we further explore complex mobile tasks of a large-
scale data set in an automatic fashion. We first segment app usage
sequences into tasks based on our proposed best task classifier
of task boundary identification. Then an unsupervised learning
method is applied to analyze various multi-app tasks for uncovering
common patterns among them. The large-scale app usage log data
we used are sampled from Verizon Media’s Flurry, with more than
17 million logs and 14K worldwide users collected within a seven-
day period in March 2017. Last, we discussed the implications of our
proposed automatic task segmentation, especially on improving
mobile search. Our contributions include:

• A detailed study (§3) of the frequency and patterns of real
user app usage logs forming mobile tasks manually labeled
by annotators;

• We propose a list of features (§4.1) that move beyond time-
outs and demonstrate that they can be used effectively to
identify mobile tasks. These features include similarity fea-
tures for extracting common characteristics and log sequence
features for capturing semantic relatedness between apps;

• We perform an extensive evaluation on a variety of classifi-
cation frameworks and empirically report the performance
of different classifiers and feature sets (§4.4). We find that
our task identification classifiers can achieve an F-measure
of 0.89 while the log sequence features are the most useful.

• By running our best task identification classifier on a large-
scale commercial mobile app usage logs (§5), we cluster the
multi-app tasks based on their characteristics and provide
evidence that there actually exist 16 groups of tasks, which
could be identified solely from their salient properties, such
as regular information checking and meal booking.

2 RELATEDWORKS
App Usage Analysis. Recent studies have focused on understand-
ing users’ behaviours on smartphones. These range from how app
usage varies depending on context [3, 15] to deriving groups of
mobile users based on their app usage behaviours [43]. These stud-
ies only look at within single app usage, and there is less research
focusing on user behaviours across apps and sessions, and the types
of tasks requiring these behaviors.

A smartphone usage session is commonly defined based on a
threshold value of potential idle or standby time between applica-
tion usage. Carrascal et al. [6, 9] define a session as an interaction
sequence without turning off the display for more than 30 seconds.
Also common is the definition of a phone usage session based on ac-
tive screen usage, which considers the time between the screen on
and screen off as one session [21]. Van Berkel et al. [35] conducted
a systematic assessment of smartphone usage gaps, and suggested
using 45 seconds as a threshold to segment app usage streams into
sessions. Rather than sessions, we study segmenting app usage into
tasks, organizing logs based on high-level user intentions. The apps
may not be consecutively used and a task may span several app
usage sessions.
Task Identification Tasks, which are defined as pieces of work,
ranging in scope from specific (e.g., sending an email) to broad
(e.g., planning a wedding), are central to all aspects of information
access and use [18]. The mobile "task" we define in our work is
more similar to so-called "task" in search [19, 24, 26], which consist
of a set of queries (apps) corresponding to a particular high-level
information need, and the queries (apps) are not necessarily the
same or even similar. In the context of web search, there have been
many attempts to segment and define tasks, relying on a notion
of timeout, lexical characteristics [37], and topic [22]. Many of
them used the idea of a "timeout" cutoff between queries to bound
tasks, i.e. 30 minutes [8, 10, 40]. As the timeout features only make
sense between consecutive queries, these approaches cannot detect
interleaved tasks, which are prevalent in real-life query logs. Some
approaches [7, 14, 24] consider lexical cues and treat queries, titles,
and snippets of clicked URLs as bag-of-words, and use some string
similarity metrics (e.g., Levenstein edit distance, n-gram Jaccard)
to measure the similarity between queries. However, Huang et
al. [23] later pointed out that many queries relating to the same
task are dissimilar in their surface form but instead are related at the
topic level (e.g., queries expressing car interests: "honda", "nissan",
and "ford"). Features that aim to capture topical relatedness have
been proposed by [22] and [28] to improve the accuracy of task
identification.

As we discussed above, many works have been done for task
identification in search [22, 24, 26, 37]; however, how to identify
tasks within mobile app usage and what features are effective have
not been studied. To extract a ground-truth of mobile tasks (§3.3),
we follow the annotation procedure of search tasks shown in Table 2.
The biggest challenge in identifying mobile tasks is that the apps do
not include abundant information as for search queries. Addition-
ally, most of the app usage logs do not provide detailed behavior
information within the apps due to privacy issues. Nonetheless, an
essential characteristic of mobile apps is that most of them are cre-
ated for satisfying the specific needs of users, e.g., weather apps for



Table 2: Summary of the task annotation procedure

Ref. Search Task [24] Search Task [37] Search Task [28] Mobile Task (Our work)
Labeled item each query log each query log each query log each app usage log
Time span 3 days 5 days 1 week 5 days
Task Guidance "...they have the same criteria for

"success", in terms of satisfying the
user’s information need..."

"...group the queries into tasks ac-
cording to annotators’ understand-
ing of users’ information needs..."

"...claimed to be task-related within
each time-gap session..."

"...The app usages should be grouped
into one task when they all work for
the same aim..."(a number of exam-
ples for explaining mobile tasks are
shown in the annotation page).

Auxiliary Info. clicked URLs, page titles, relevant
snippets, etc.

search for logged queries and
browse the clicked URLs.

No App description for introducing
app function, content, and users’
comments, etc.

No. of Annotators a group 3 from their laboratory but not di-
rectly involved in this work

3

Label Output Task ID and description No tag and optionally a longer descrip-
tion

Task ID and optionally task descrip-
tion

Validation No Cohen’s kappa No Cohen’s kappa

displaying weather information and map apps for helping users in
navigation. Therefore, even if we cannot audit internal interactions
within apps, the app description information includes information
about the function of the app. We extract the app description infor-
mation to help annotators in judging mobile tasks.

Another challenge of mobile task identifying is that we have
less support information for verifying if two operations are serving
one task. In the search tasks, even if the queries have fewer words,
some common information can be found in the searched results
(clicked URLs); this can help in determining whether two queries
related to the same information needs. Going back to our cases, we
also measure other supportive operations to help identify mobile
tasks, e.g., whether two apps are frequently switched back and forth
within a short period of time. In §4.4, we show that the traditional
temporal features combined with our proposed novel app-log fea-
tures, e.g. similarity features extracting lexical characteristics and
log sequence features capturing topic relatedness, can be used to
classify app streams into task structure.

3 MOBILE TASKS
We formally define mobile tasks and formulate the automatic iden-
tification of mobile tasks as two supervised machine learning tasks.
We then present the way we manually annotated the mobile tasks,
which generate the ground-truth of our supervised learning. Lastly,
we perform an analysis on the annotated tasks.

3.1 Task Definition
App usage log records mobile app interaction behaviours from a
set of different users 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑁 }. It stores a sequence of
app usage 𝐿𝑛 = {(𝑎𝑛1 , 𝑡

𝑛
1 ), (𝑎

𝑛
2 , 𝑡

𝑛
2 )..., (𝑎

𝑛
𝑀
, 𝑡𝑛
𝑀
)} from user 𝑢𝑛 , where

𝑡𝑛
𝑖
is the corresponding timestamp when using app 𝑎𝑛

𝑖
.

Definition 3.1. (SESSION 𝑆𝑛𝑡 ) Given user 𝑢𝑛 ’s app usage logs
𝐿𝑛 and a fixed time-out threshold 𝜏 , a session 𝑆𝑛𝑡 is a set of con-
secutive app usage from 𝐿𝑛 , such that ∀(𝑎𝑛

𝑖
, 𝑡𝑛
𝑖
) ∈ 𝑆𝑛𝑡 , (𝑎𝑛𝑗 , 𝑡

𝑛
𝑗
) ∈

𝑆𝑛𝑡 , (𝑎𝑛𝑙 , 𝑡
𝑛
𝑙
) ∉ 𝑆𝑛𝑡 , |𝑡𝑛𝑖 − 𝑡𝑛

𝑗
| ≤ 𝜏𝑐𝑢𝑡 and |𝑡𝑛

𝑖
− 𝑡𝑛

𝑙
| > 𝜏𝑐𝑢𝑡 .

The definition of session implies that {𝑆𝑛𝑡 }𝑇𝑡=1 is a set of disjoint
partitions of app usage logs 𝐿𝑛 , such that ∀𝑖 ≠ 𝑗 , 𝑆𝑛

𝑖
∩ 𝑆𝑛

𝑗
= ∅ and

𝐿𝑛 =
⋃
𝑖 𝑆
𝑛
𝑖
. Typical time-out threshold 𝜏𝑐𝑢𝑡 in the context of mo-

bile apps is set to be a short period, i.e., 30 [6, 9] or 45 seconds [35].
We adopt in the rest of our paper the threshold 𝜏𝑐𝑢𝑡 = 45 seconds
to segment app sequences into sessions, following the recommen-
dation from the systematic analysis conducted in [35]. A session,
for us, is just a slice of user time. Other definitions (which conflict

themselves) involve an absence of periods of inactivity [6, 9], or
app used between unlocking and locking the phone [25]; ours does
not, since we want to account for tasks, defined below, and use
inactivity as a predictor, rather than as a definition.

Definition 3.2. (TASK 𝑇𝑛
𝑘
) Given user 𝑢𝑛 ’s app usage logs 𝐿𝑛 , a

mobile task 𝑇𝑛
𝑘
is a maximum subset max𝑇𝑛

𝑘
∈𝐿𝑛 |𝑇𝑛

𝑘
| of logs in 𝐿𝑛 ,

such that all the app usage in 𝑇𝑛
𝑘
correspond to a particular need.

This definition of mobile task indicates that {𝑇𝑛
𝑘
}𝐾
𝑘=1 is also a set

of disjoint partitions of app usage sequence 𝐿𝑛 : ∀𝑗 ≠ 𝑘,𝑇𝑛
𝑗
∩𝑇𝑛
𝑘
= ∅

and 𝐿𝑛 =
⋃
𝑘 𝑇

𝑛
𝑘
. However, each 𝑇𝑛

𝑘
is not confined to a particular

session 𝑆𝑛𝑡 segmented only based on time threshold; instead, one
mobile task can contain multiple sessions, even if they are not
consecutive. A mobile task can be thought of as a group of related
apps to accomplish a single discrete task. As the example shown
in Table 1, all the app usages of Whatsapp, Yelp, Google Maps and
Uber may span across multiple sessions that are not consecutive.
However, they belong to the same task of “planning to have dinner
with friends”.

3.2 Formulation for Supervised Task Learning
3.2.1 Task Boundary Detection. If tasks are not interleaved, as as-
sumed in previous work [35], it suffices to find a boundary between
one task and the next. To do this we can look at each sequential
pair of app usage and ask whether this pair straddles a boundary.
Thus we look at task boundary detection. Each pair of sequential
app usage from a user’s log is a possible boundary between tasks.
We seek to take each such pair and decide whether the pair crosses
a boundary between tasks. Formally we consider the task:

{⟨(𝑎𝑛𝑖 , 𝑡
𝑛
𝑖 ), (𝑎

𝑛
𝑗 , 𝑡

𝑛
𝑗 )⟩ : (𝑡

𝑛
𝑖 < 𝑡𝑛𝑗 )

∧
(�𝑎𝑛

𝑘
: 𝑡𝑛𝑖 < 𝑡𝑛

𝑘
< 𝑡𝑛𝑗 )} → {0, 1}

where 𝑡𝑛
𝑖
is timestamp of app usage 𝑎𝑛

𝑖
; ⟨(𝑎𝑛

𝑖
, 𝑡𝑛
𝑖
), (𝑎𝑛

𝑗
, 𝑡𝑛
𝑗
)⟩ repre-

sents any consecutive app usage pair; {0, 1} represents a binary
variable whereas 0 and 1, respectively, indicate non-boundary and
boundary. This task boundary detection was traditionally addressed
using timeouts [35].

3.2.2 Same-task Identification. No previous work has addressed in-
terleaved taskswhenmeasuring users’ mobile app usage behaviours.
Therefore another supervised learning problem is proposed to cover
all kinds of tasks identification, no matter whether they are inter-
leaved or not. In this scenario, we must consider all possible pairs of
apps usage, and consider whether the pair of apps usage come from
the same task. Correctly performing this task will allow interleaved



Figure 1: Screenshot of the annotation page on MTurk

tasks to be identified. We call this same-task identification. We seek
to learn a classifier to take a pair of app usage logs and map it to 1
if they are from the same task, and 0 if they are from different tasks.
We consider all pairs of app usage logs ⟨(𝑎𝑛

𝑖
, 𝑡𝑛
𝑖
), (𝑎𝑛

𝑗
, 𝑡𝑛
𝑗
)⟩ such that

𝑎𝑛
𝑖
was accessed before 𝑎𝑛

𝑗
:

{⟨(𝑎𝑛𝑖 , 𝑡
𝑛
𝑖 ), (𝑎

𝑛
𝑗 , 𝑡

𝑛
𝑗 )⟩ : 𝑡

𝑛
𝑖 < 𝑡𝑛𝑗 } → {0, 1}

where 𝑡𝑛
𝑖
is the timestamp of app usage log𝑎𝑛

𝑖
; here ⟨(𝑎𝑛

𝑖
, 𝑡𝑛
𝑖
), (𝑎𝑛

𝑗
, 𝑡𝑛
𝑗
)⟩

represents any possible app usage pairs.

3.3 Mobile Task Annotation
To acquire a ground-truth of mobile task labels for the supervised
learning tasks (§3.2), we conduct a mobile task annotation crowd-
sourcing study. We sample the app usage logs for such annotation
from the publicly available UbiqLog dataset1 [33, 34], where par-
ticipants were required to install the lifelogging app UbiqLog on
their phones from November 2013 to January 2014. We select 20
users randomly, for which five-day of app usage logs are collected,
including anonymized user ID, app package ID and corresponding
timestamps. Furthermore, to help the annotators obtain a good un-
derstanding of each app, we crawled additional information, such
as app title, genre, description, icon and the URL of the app on
Google Play.2 Some statistics of this dataset are shown in Table 3.

Crowdsourced assessments have been commonly used to obtain
labeled data [30, 38]. To identify mobile tasks, three annotators were
recruited fromAmazonMechanical Turk [2], which is a crowdsourc-
ing website for businesses (known as Requesters) to hire remotely
located "crowd workers" for performing discrete on-demand tasks
that computers are currently unable to do. No personally identifi-
able information was collected. Only an anonymized ID is used to
identify the different annotators.

Since no research has been done for exploring the methods of
understanding and identifying mobile tasks, most of our annotation
procedures follow the prior work on search task annotation [24, 26].
1UbiqLog: https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+lifelogging)
2We can trace back an app on Google Play by using the app package ID - the unique
identifier, e.g., com.yahoo.mobile.client.android.weather is the Yahoo Weather app.

Table 3: Statistics of the dataset for annotation

#User #Log App/User Log/User
20 3558 22.3 ± 8.3 177.9± 63.7

A detailed guideline was presented to the assessors, describing in
general what a mobile task is (reformulated from §3.1) and showing
several examples demonstrating what constitutes a mobile task. A
sequence of app usage is considered as part of a coherentmobile task
if they collectively try to achieve a certain goal. One such example
of a mobile task is: a user may check the date with the Calendar
app when replying/sending an email via the Email app. In this task,
the interval between the access of Calendar and that of Email app
is very short (e.g., 10 seconds). In addition, the user switches back
and forth between these two apps. Therefore, these app usages
should be grouped into one task since they work for the same aim –
finishing writing the same email (with time information). To ensure
the quality of the assessment results, we apply a series of quality
control mechanisms. We create a set of "trap hits" to detect whether
the assessors made assessments that are consistent with those we
know the answer. All the assessments from assessors who fail a
number of “trap hits” were removed.

The annotation page presented to the assessors is shown in Fig-
ure 1, including the app usage information such as timestamp, app
icon, and app name. To provide relevant information to the asses-
sors, we provided the URLs directed to the corresponding app info
on Google Play, where the assessor could browse the detailed de-
scription of app functionalities, screenshots and user comments of
this app. Each assessor was asked to select a Task ID number from
the drop-down menu to label an app usage, and each app usage
log belonged to the same task was labeled with the unique same
task ID as shown in Figure 1. The annotators were also asked to
optionally write a short description for each task. We measured the
inter-annotator agreement using Cohen’s Kappa [16] as previous
studies that focused on the search task annotation [26, 30]. The
same set of logs was annotated by three assessors and we measured
the inter-rater agreement. Following [37], we randomly select all
the logs from a subset of users (2 out of 20) and instructed three
annotators to assess all those logs. Through this strategy, we can
exploit the assessments on this subset of user logs to calculate the
Kappa among annotators. A Kappa value of 0 implies that any an-
notator agreement is due to chance, whereas a kappa value of 1
implies perfect agreement. In our data, the Kappa values for the
three pairs of annotators were 0.69, 0.65, and 0.71, which, accord-
ing to Landis and Koch [27], represent the substantial agreement.
This partially demonstrates the internal validity of our annotation
method.

3.4 Patterns of Mobile Tasks
After aggregating the three assessors’ annotations, we ultimately
obtain a collection of 1414 tasks annotated out of 20 users’ app
usage logs.3 The statistics of those annotated tasks are shown in
Table 4. We observe that firstly, 49.3% of the mobile tasks require
users to visit apps for more than once (multi-log task, 49.3%), which

3All the annotated data and annotation guideline can be accessed at
https://www.cs.nott.ac.uk/~pszkz/mobile-task.html.



Table 4: Statistics of the annotated mobile tasks

All Tasks
#Task #Task/User #Single-log Task #Multi-log Task
1414 46.8±38.6 717 (50.7%) 697 (49.3%)

Multi-log Task
#Logs/Task #Apps/Task #Same-app Task #Multi-app Task

4.1±3.7 1.7±1.3 418 (29.6%) 279 (19.7%)
#Interleaved Task #Interleaved Task/User #Multi-app Task/User Task Duration

320 (22.6%) 12.1±11 9.1±7.7 22±84.3 (min)

consists of both same-app task (users visit the same app more than
once, 29.6%) and multi-app task (users visit more than one app,
19.7%). An example of such same-app task is: a user accessed the
Clock app for four times at 6:00, 6:05, 6:35 and 7:05 in the morning.
The four alarm clocks wake the user up and provide small nap
intervals. Additionally, an example of multi-app task is: a user
switched between Calendar and Email app as mentioned in §3.3.

We can also observe that among all these annotated tasks, 22.6%
of them are interleaved, which means that not all apps within one
task are consecutively accessed. For example, the user may perform
the task of playing games, interleaved by the task of chatting with
friends in between. All the above task patterns demonstrate the
need for moving beyond single once app usage and extracting high-
level mobile tasks. In particular, when we look into those multi-log
tasks, they on average span across 4.1 logs, with 1.7 apps accessed
and last 22 minutes. These indicate that cross-log and cross-app
mobile task extraction are not trivial problems.

4 TASK IDENTIFICATION
We evaluate the performance of a set of predictive features (§4.1)
using two set of supervised classification models (§4.2) on both task
boundary detection and same-task identification.

4.1 Predictive Features
We describe the features we use in our experiments to classify tasks.
We experimented with 14 features related to app usage patterns cov-
ering three aspects: temporal, similarity and log sequence. Table 5
provides an overview of the features.

4.1.1 Temporal Features. While timeouts alone have been com-
monly used as predictors of session boundaries, they may help in
identifying task boundaries and especially when used with other
features. To measure the temporal characteristics of two apps usage,
inspired by the study on search task identification [24], we generate
three forms of temporal features: binary_interval, time_diff and
sequential_status. For a given log pair, both binary_interval and
time_diff features capture the duration of the interval between this
log pair, where the longer the duration, the less likely this log pair
would be part of the same task. Specifically, the binary_interval rep-
resents whether the inter-log interval exceeds a threshold (e.g. 10s,
1min, 5min, etc.) while time_diff concentrates on the exact inter-log
time in seconds. Thirdly, the sequential_log feature is used to repre-
sent if two app usage logs are sequential in time, with no instance
of other log entries4 (apps); potentially indicating that these two
log entries originate from the same task.

4This sequential_log feature does not apply to task boundary detection given all the
log entry pairs are sequential in this setting.

Table 5: Overview of features for identifying whether a pair
of two sequential or arbitrary app usage logs relate to the
same task.

Temporal Features
binary_interval Inter-log time threshold as a binary feature (10s, 1min, 5min, 10min, 30min,

60min, 120min), e.g. if inter-log time > 10s, binary_interval (10s) = 1; other-
wise binary_interval (10s) = 0.

time_diff Inter-log time in seconds; We may be able to learn good thresholds of inac-
tivity for identifying task boundaries.

sequential_logs Binary feature which is positive if the pair of logs are sequential in time, with
no intervening actions between the pair of app usage. We expect this feature
to be useful for the same-task identification.

Similarity Features
same_cate Binary feature for identifying if pairs of apps belong to the same app cate-

gory.
common_w Number of words in common of the app descriptions.
tfidf_cosine Cosine similarity between the term sets of app description while each term

is weighted by the tf-idf weighting scheme.
jaccard_coeff Jaccard coefficient between the term sets of app description.
word_embed_sim Cosine similarity between the word embeddings (§ 4.1.2) based on the term

sets of app description.
Log Sequence Features

PMI Point mutual information for finding collocations and associations between
apps frequently used together within the same session.

pa12 The probability for measuring if two apps are always successively used.
switch_state Binary feature indicates whether there exists switch (i.e. 𝑎𝑛2 → 𝑎𝑛1 → 𝑎𝑛2 )

between 𝑎𝑛2 and 𝑎𝑛1 .
switch_prob The probability of switch interaction happened with 𝑎𝑛1 and 𝑎𝑛2 .
peos_a2 The probability that app 𝑎𝑛2 is users’ last app usage of the day.
no_dist Number of apps usage logs in between 𝑎𝑛1 and 𝑎𝑛2 . This feature is for same-

task identification.

4.1.2 Similarity Features. A previous study [41] found that apps in
the same or similar genre are more likely to be used together. Fur-
thermore, users were found to often browse multiple similar apps
to compare and obtain complementary information to accomplish
their mobile tasks [39]. To quantify the similarity between any pairs
of apps, the broad category or the detailed description of the app
can be used. As shown in Table 5, first, we use the feature same_cate
to identify if two apps originate from the same broad app category
(e.g., shopping and music). To capture a more nuanced similarity
between apps, we exploit the app descriptions and leverage four
textual similarity measures: common_w, tfidf_cosine, jaccard_coeff
and word_embed_sim, as defined in Table 5. These four similarity
measures of any log entry pairs are calculated based on their corre-
sponding app description crawled from Google Play, with all stop
words filtered out. The former three measures are based on tra-
ditional lexical similarity whereas the word_embed_sim approach
utilizes the semantic similarity based on the word embedding rep-
resentations of the app descriptions. The word embedding vectors
are based on GloVe vectors trained on Common Crawl [1]. The sen-
tence representation is simply an average of the word embedding
representations of all the words in the sentence.

4.1.3 Log Sequence Features. Sometimes tasks may contain pairs
of apps that are logistically related but do not share common terms
in their description. For example, "Yelp" and "Google Maps" may be
used to carry one task, planning a dinner with friends; but both apps
have no common functions and are not from the same app category.
To capture such relationship between pairs of apps ⟨𝑎𝑛1 , 𝑎

𝑛
2 ⟩, we

introduce six features based on leveraging historical app usage data:
• PMI : Pointwise Mutual Information(PMI) [12] is a measure

of correlation defined as:

𝐼 (𝑥,𝑦) = 𝑙𝑜𝑔
𝑃 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦)



The numerator is the probability of co-occurrence of the
events 𝑥 and 𝑦; the denominator is the probability of each
event occurring independently. In our scenario, the higher
the PMI between two apps, the higher the possibility that
these two apps will co-occur in the same session. To calculate
the PMI of any app pair ⟨𝑎𝑛1 , 𝑎

𝑛
2 ⟩, the app probabilities 𝑃 (𝑎𝑛1 )

and 𝑃 (𝑎𝑛2 ) are estimated by counting the number of obser-
vations of 𝑎𝑛1 and 𝑎𝑛2 across all the app usage sessions, and
normalizing by 𝑁 , which is the number of sessions. The joint
probability, 𝑃 (𝑎𝑛1 , 𝑎

𝑛
2 ), is estimated by counting the number

of times that 𝑎𝑛1 and 𝑎𝑛2 co-occurred in the same session,
normalizing by N.

• pa12: 𝑝 (𝑎𝑛1→𝑎𝑛2 )
max𝑎𝑛

𝑗
𝑝 (𝑎𝑛1→𝑎𝑛

𝑗
) is the normalized probability that 𝑎𝑛2

is used right after 𝑎𝑛1 within the same session [24]. It is used
to measure whether two apps are always used successively.

• switch_state: captures users’ switching between two apps.
For any log pair ⟨𝑎𝑛1 , 𝑎

𝑛
2 ⟩, switch_state is 1 if 𝑎𝑛2 was used

right before ⟨𝑎𝑛1 , 𝑎
𝑛
2 ⟩ in the same session. This represents

an in-session user interaction of 𝑎𝑛2 → 𝑎𝑛1 → 𝑎𝑛2 , which
indicates that the user 𝑢𝑛 switches back and forth on 𝑎𝑛2
within the same session. Otherwise, switch_state is 0.

• switch_prob: 𝑓 (𝑎
𝑛
1→𝑎𝑛2→𝑎𝑛1 )
𝑓 (𝑎𝑛1→𝑎𝑛2 )

is the probability that a switch
between 𝑎𝑛1 and 𝑎𝑛2 happens when accessed sequentially.

• peos_a2: since often people finish a task before turning off
for the day [24], “last app usage of the day” might be a useful
indicator of the last app used in a task. Following from [24],
we generate the feature peos_a2 to capture the probability
that 𝑎𝑛2 is the last used app based on aggregating app usage
logs of all users before midnight.

• no_dist: represent the number of app usage logs (distance)
between 𝑎𝑛1 and 𝑎𝑛2 [37]. This feature only applies to those
arbitrary app usage log pairs for the same-task identification.

4.2 Predictive Models
Given our predictive features, we introduce a set of state-of-the-
art algorithms to build models for the two classification problems:
task boundary detection and same-task identification. We compare
four widely used classifiers: (1) L2-regularized Logistic Regression
(LR) [20], as an example of linear classifier; (2) K Nearest Neigh-
bours (KNN) [13], as an example of a non-parametric method for
classification; (3) Support Vector Machines (SVM) with Radial Ba-
sis Functions kernel [36] as an example of a non-linear classifier;
and (4) XGBoost [11], as an example of a state-of-the-art ensemble
learning. These models construct different prediction functions for
the data from different aspects. Rather than training a personalized
classifier for each user, we make our classifiers generic so that they
can be applied across all users.

4.3 Metrics and Baselines
Four metrics are used to measure the performance of our pro-
posed classification models: accuracy (Acc.), precision (Pre.), re-
call (Rec.) and F-measure (F-mea.). We measure the performance
of each method by splitting the data based on users with 5-fold
cross validation (80% users’ logs for training and 20% users’ logs
for testing).

Next, we construct a set of baselines to compare against our
proposed approach. Since no prior research was conducted on
mobile task identification, we adopt models used in search task
identification [24, 26, 32] as our baselines. These models are based
on either timeout or similarity between queries. To compare with
methodologies using a timeout, we use both a thirty-minute thresh-
old [32], as well as time thresholds learned using cross-validation.
To adapt the similarity-based approaches, we follow [26], which
utilizes logistic regression to learn a model using only Levenshtein
edit distance between the current (given) query and all previous
queries. This is a reasonable baseline under the assumption that an
intelligently-chosen threshold applied to the dissimilarity between
two queries could provide an accurate prediction of whether two
queries related to the same task. In our task identification problem,
the Levenshtein distance is calculated based on app descriptions in-
stead of queries. Additionally, Jones et al. [24] use a strong baseline
𝑐𝑜𝑚𝑚𝑜𝑛𝑤 + 𝑝𝑟𝑖𝑠𝑚𝑎 + 𝑡𝑖𝑚𝑒 to identify the search tasks, where the
𝑐𝑜𝑚𝑚𝑜𝑛𝑤 identifies the number of words in common and 𝑝𝑟𝑖𝑠𝑚𝑎

is the cosine distance between vectors derived from the first 50
search results for the query terms. Since we are using apps instead
of queries, 𝑐𝑜𝑚𝑚𝑜𝑛𝑤 is replaced by identifying if two apps belong
to the same category, whereas 𝑝𝑟𝑖𝑠𝑚𝑎 is replaced by calculating
the cosine distance between vectors derived from the app descrip-
tions. Lastly, we also use the mobile session segmentation method
with a 45-second threshold [35] as a benchmark, where a session is
considered as a task.

4.4 Experimental Results
We evaluate the classifiers for task boundary detection as well
as identifying whether arbitrary pairs of logs belonging to the
same task. Table 6 reports the performances of these models with
different baselines and feature sets. Only results for the logistic
regression classifier are reported in Table 6 since it outperforms
other classifiers, as we show in Table 7. The comparative rankings
of models that utilize different feature sets are similar across the
different predictive models (§4.2). From Table 6, we can observe that
in general, when we combine all three types of features we achieve
the best results for both task boundary detection and same-task
identification, outperforming all baselines.

When examining solely on task boundary detection, our model
exploiting all feature sets achieves the highest F-measure score of
0.89. This is when temporal features are used in conjunction with
similarity and log sequence features. This means that time interval,
similarity and sequential relationships between apps are comple-
mentary, and should all be taken into consideration to detect task
boundary. When a set of features is used on its own, log sequence
features work best, whereas temporal features perform poorly. Com-
paring against the baseline approaches, despite its relatively poor
performance, our proposed temporal features still outperform the
best time-based baseline (Learned Time Threshold with F-mea =
0.62). These results demonstrate that solely using the time interval
between two app usage (e.g., Mobile Session Threshold [35]) is not
sufficient to indicate that a task has been completed, as assumed in
prior studies [35]. We find similar trends for same-task identifica-
tion. Note that due to the nature of this problem, our training and
test data are more biased: the majority of app usage pairs do not



Table 6: Performance comparison of different feature sets based on Logistic Regression (5-fold cross validation) for task bound-
ary detection and same-task identification. * indicates statistical significant (p ≤ 0.05) using two-tailed T-test compared to the
F-measure of best baseline.

Baselines Measurements Proposed Features Measurements
Acc Pre Rec F-mea Acc Pre Rec F-mea

Task Boundary Detection

Search Threshold (30min) [32] 0.56 0.33 0.81 0.47 Temporal (T) 0.63 0.66 0.65 0.64
Learned Time Threshold 0.52 0.55 0.83 0.62 Similarity (S) 0.80 0.75 0.92 0.82
Trained Levenshtein distance [26] 0.63 0.61 0.74 0.66 Temporal + Similarity (T+S) 0.80 0.75 0.92 0.83
commonw+prisma+time [24] 0.80 0.74 0.94 0.82 Sequence (LS)* 0.87 0.86 0.88 0.87
Mobile Session Threshold (45s) [35] 0.44 0.37 0.80 0.51 Temporal+Similarity+Sequence (T+S+LS)* 0.89 0.88 0.91 0.89

Same-task Identification

Search Threshold (30min) [32] 0.77 0.85 0.85 0.85 Temporal (T) 0.74 0.74 1.00 0.84
Learned Time Threshold 0.78 0.78 1.00 0.87 Similarity (S) 0.74 0.74 1.00 0.84
Trained Levenshtein distance [26] 0.74 0.74 1.00 0.84 Temporal+Similarity (T+S) 0.78 0.78 0.98 0.86
commonw+prisma+time [24] 0.78 0.78 1.00 0.87 Sequence (LS)* 0.80 0.78 1.00 0.88
Mobile Session Threshold (45s) [35] 0.73 0.74 0.99 0.84 Temporal+Similarity+Sequence (T+S+LS)* 0.82 0.82 0.97 0.89

Table 7: Overview of the performance for different classi-
fiers with the best performing feature sets (5-fold cross vali-
dation). * indicates statistical significant (p ≤ 0.05) using two-
tailed T-test compared to the F-measure of the best perform-
ing logistic regression (LR) model.

Classifiers Measurements
Acc Pre Rec F-mea

Task Boundary Detection

KNN: All Feature Sets (T+S+LS)* 0.75 0.69 0.92 0.78
SVM: All Feature Sets (T+S+LS)* 0.63 0.60 0.88 0.70
XGBoost: All Feature Sets (T+S+LS) 0.89 0.87 0.90 0.88
LR: All Feature Sets (T+S+LS) 0.89 0.88 0.91 0.89

Same-task Identification

KNN: All Feature Sets (T+S+LS) 0.75 0.76 0.90 0.82
SVM: All Feature Sets (T+S+LS) 0.76 0.76 0.99 0.85
XGBoost: All Feature Sets (T+S+LS) 0.80 0.78 1.00 0.88
LR: All Feature Sets (T+S+LS) 0.82 0.82 0.97 0.89

belong to the same task. This is the reason why most of the baseline
models achieve relatively high performance (with F-measure at
around 0.8). Compared to those adapted baselines, models that in-
corporate log sequence features perform significantly better. When
comparing different classifiers, as shown in Table 7, we find that
the differences are relatively small while the LR classifier performs
the best, followed by XGBoost.

4.5 Feature Importance
We showed above that by using a combination of three types of
features, we could get the best performance for both task bound-
ary detection and same-task identification based on the logistic
regression classifier. In this section, we examine the contribution
of each individual feature based on the feature coefficients in their
corresponding logistic regression models.

To compare the importance of different features, we divide each
numeric variable by two times its standard deviation [17]. This way,
the resulting coefficients are directly comparable for both binary
variables (e.g., categorical dummy variable) and numerical features.
Table 8 summarized the feature weights for task boundary detec-
tion and same-task identification problems, respectively. It is not
surprising that time_diff (inter-log time in seconds) is among the
strongest signals for both problems. The longer the time interval,

the less likely the app usage pair relates to the same task. For the
task boundary detection, most of the similarity features receive
higher importance weights. This indicates that similar apps that
are sequentially used are likely to relate to the same task. This is
especially true given the large percentage of same-app tasks (29.6%),
i.e., users access the same app multiple times sequentially. By con-
trast, for the same-task identification problem, the log sequence
features, especially no_dist and PMI, receive higher weights. This in-
dicates that, for any arbitrary pair of app usage, co-occurrence based
features are more predictive, compared to temporal and similarity-
based features. Not surprisingly, if the two app usage log entries
are proximate in time (time_diff ) and more semantically similar
to each other (word_embed_sim), they are more likely to belong to
the same task. Interestingly, when the app pair is both temporally
and semantically similar, these two log entries are more likely to
form a task if they are more “distant” (i.e., there are more apps in
between, captured by no_dist). This implies that those tasks are
commonly interleaved with other tasks. Furthermore, we find that
the binary_interval (120 min) has more influence on same-task iden-
tification than task boundary detection. For any arbitrary pair of
app usage, if the interval time is longer than two hours, this pair is
less likely to belong to the same task. For the similarity features,
the semantic-based feature word_embed_sim contributes more to
the same-task identification than task boundary detection.

5 UNDERSTANDING TASKS IN THEWILD
By manually annotating mobile tasks from a small dataset (§3.3),
we shed lights on some important characteristics of mobile tasks
(§3.4), such as multi-app and interleaved tasks. However, it remains
difficult to infer common task patterns given the size of the dataset.
To gain further understanding, mapping large-scale app usage logs
to tasks is required. However, manual labeling of a large data set is
time-consuming and infeasible. In this section, by leveraging our
best-performing task identification model (task boundary detection)
and a large-scale dataset of app usage logs from the Verizon Media’s
Flurry mobile analytics platform, we aim to gain insights of a large
spectrum of mobile tasks. The dataset consists of a sample of logs
recorded from a week (6th -12th) in March 2017 of 17 million logs
from 9K unique apps and 14K users. Each record consists of the
user’s anonymized ID, demographics, operating system, timestamp,



Table 8: Feature weights (absolute value of standardized co-
efficients) for logistic regression model to identify the task
boundary and pair of logs within the same-task. * indicates
p-value ≤ 0.01 using Chi-Squared test.

Task Boundary Detection Same-task Identification
Feature Feature Type Weight Feature Feature Type Weight
pa12* Log Sequence -1.440 time_diff* Temporal -0.946
time_diff* Temporal 0.832 no_dist* Log Sequence 0.578
common_word* Similarity -0.521 PMI* Log Sequence 0.232
jaccard_cofficient* Similarity -0.507 word_embed_sim* Similarity 0.352
tfidf_cosine* Similarity -0.500 binary_interval(120 min)* Temporal -0.185
word_embed_sim* Similarity -0.460 pa12* Log Sequence 0.168
PMI* Log Sequence -0.338 switch_prob* log Sequence 0.127
same_cate Similarity -0.310 binary_interval(60 min)* Temporal 0.103
switch_prob* log Sequence -0.275 same_cate* Similarity 0.071
switch_logs* Log Sequence -0.097 jaccard_coefficient* Similarity -0.069
binary_interval(1min) Log Sequence 0.088 tfidf_cosine* Similarity -0.050
binary_interval(60min) Temporal 0.075 binary_interval(30 min)* Temporal 0.042
binary_interval(5min) Temporal 0.070 common_word* Similarity 0.041
binary_interval(10min) Temporal 0.064 sequential_logs* Temporal 0.037
binary_interval(10s) Temporal 0.053 binary_interval(5 min)* Temporal -0.036
binary_interval(30min) Temporal 0.040 binary_interval(10 min)* Temporal 0.013
peos Log Sequence 0.039 binary_interval(1 min) Temporal -0.013
binary_interval(120min) Temporal 0.036 binary_interval(10 s) Temporal 0.008

peos Log Sequence 0.001

Table 9: Features used for Clustering

Feature Dimension Description
𝑁𝑎 1 Number of distinct apps
𝑁𝑎𝑐 1 Number of distinct app categories
𝐷 1 Task duration (min)
𝐻 1 Hour
𝑊 1 Day of the week
𝐴 45 "Bag-of-app" vector of app categories
𝑇𝑝 1 Percentage of visiting the most popular app within that

task (the most visited in-task app)
𝐷𝑝 1 Duration proportion of dominant app within that task (the

most time-consuming in-task app)

app category, and usage duration. The dataset was anonymized
and encrypted. Given the best task boundary detection approach
(Table 6), the app usage logs are first separated based on the detected
boundaries; we then only keep those tasks with at least two usage
logs (multi-log tasks) for our further analysis.

5.1 Clustering
The main objective of this analysis is to divide multi-log tasks into
natural groups that reflect salient patterns of mobile tasks. We
employ unsupervised learning to derive generic profiles of these
tasks. We represent each task using the features in Table 9. Each
task can be represented by the number of distinct apps, the number
of distinct app categories, task duration, hour of the day, day of
the week, app categories, the percentage of accessing the most
popular app within the task, and duration proportion of the most
time-consuming app in the task.

Clustering methods can be applied to automatically find clusters
of data points with similar characteristics within an n-dimensional
space. Some clustering methods are fast to execute, but they re-
quire the number of clusters to be set a priori before the clustering
takes place, like k-means. Therefore, to cluster the tasks into dif-
ferent groups, a challenge is to determine the appropriate number
of clusters. Given it is difficult to know 𝑘 in advance, we follow
the clustering method from [43]. They make use of k-means with
a pre-specified number of clusters and then cluster the centroids
found using MeanShift. Specifically, they first select 𝑘 to be signif-
icantly larger than the number of natural clusters suitable to the
problem for k-means, and then use MeanShift to merge centroids

generated by k-means to match the natural clusters. In this way,
the more computationally complex MeanShift clustering step can
be performed quickly as its input data is much smaller than the
original dataset. Following their method, we test different k from 2
to 100 for both k-means and the k-means-MeanShift hybrid method.
For the clustering results, we exclude those clustering configura-
tions (k) that produced clusters with less than 0.1% of the tasks,
which is not suitable for our purpose of analyzing common task
patterns. In what follows, the clustering results are evaluated by
their cp score [43], which are mainly used to reward the uniform
distribution of data points across clusters (Shannon’s entropy [31])
and the internal validity (Dunn’s index [29]) within each cluster.

Ultimately, we obtain 16 clusters (types of tasks) based on the
highest cp score, and show the characteristics of these tasks in
Table 10. To characterise the clusters, we also present an example
of the most popular app usage sequence based on the frequency of
that app usage sequence within each cluster, normalized by the total
frequency of that sequence across all clusters. We observe that these
clusters have on average 1.7±0.2 apps in each task; the proportion
of visiting the most popular app in the task is 0.67±0.13; and the
duration proportion of dominant app is 0.90±0.05. This indicates
that most of the time, even multiple apps are engaged, users mainly
focus on interacting with one of the apps during the task. Based
on the characteristics (i.e., feature distributions and popular app
sequences) of those clusters, we label each cluster with a task label
(e.g., we label C1 as a “meal booking” task). From Table 10, we can
observe there exist several unique groups of mobile tasks, whereas
the temporal pattern plays a strong role in distinguishing those
tasks:

• For the top ranked clusters, transportation and navigation
apps are very popular in those multi-log tasks, which indi-
cates that users tend to interact with different apps while on
the move. For example, users might be planning to eat out
for dinner (C1), commute (C2, C5) and go shopping (C9).

• Users tend to regularly browsemultiple data sources together
on mobile devices to obtain the latest information. These
tasks are all very short, from 1.4min to 3.7min, which include
morning regular information check (C2) on weather and
finance (e.g., stock), reading latest news during commuting
(C5), and consuming personalized information from various
widgets (C7).

• Business related tasks may arise as users tend to perform
micro-work tasks on smartphones, especially after work (C3)
or on the move (C5). Those business apps include document
editor/reader, remote desktop and email management apps.

• Communication apps are frequently used within many types
of mobile tasks as a supportive channel. For example, users
might communicate with colleagues while conducting some
work-related tasks (C3). On the other hand, other apps or
services are often used to facilitate communication as well.
For example, users perform searches to gather information
to share with friends while chatting (C4).

• Entertainment related tasks such as gaming occur through-
out different times of the day, including: (a) “snack-style”
gaming (around 15 mins) with multiple mini games in the
morning (C10) and afternoon (C8); (b) “intensive” gaming



Table 10: Characteristics of Clusters

Cluster Duration(min) App Categories Popular Time Range Popular App Usage Sequence Task Label

C1(15.9%) 1.8 transportation, navigation, food-and-drink, communication afternoon:15:00-21:00 transportation->communication->transportation meal booking
C2(14.7%) 1.5 navigation,finance, weather, productivity morning:7:00-11:00 weather->finance->productivity(mail) regular info checking
C3(13.0%) 1.4 productivity, communication, tools, business afternoon: 15:00-21:00 productivity->productivity->business mobile working
C4(11.6%) 0.8 widgets, productivity, communication, photography afternoon:16:00-20:00 communication->productivity->communication search while chatting
C5(10.2%) 3.7 finance, business, transportation, news morning:9:00-13:00 transportation->news info checking while commuting
C6(6.7%) 6.8 family, strategy, racing, social night:20:00-22:00 family->social->social social and games
C7(5.6%) 1.4 weather, widgets, tools, productivity early morning:4:00-8:00 widgets->weather->productivity widgets info checking
C8(5.6%) 16.1 adventure, action, racing,comics afternoon:15:00-18:00 action->action gaming in the afternoon
C9(5.0%) 3.1 food-and-drink, weather, transportation, shopping morning:9:00-12:00 weather->transportation shopping trip to the mall
C10(4.2%) 18 games, puzzle, stimulation, board morning:9:00 -12:00 games->games->games multiple games in the morning
C11(2.7%) 32.3 comics, board, puzzle, role-playing evening:18:00-22:00 puzzle->puzzle one game at night
C12(2.2%) 43.4 word, role-playing, strategy, food-and-drinks late night:00:00-10:00 role-playing->food-and-drinks gaming and booking for late-night food delivery
C13(1.2%) 68.2 music, strategy, comics, adventure afternoon:15:00-21:00 music->strategy->music listening to music while playing games
C14(0.8%) 84.0 education,video,health-and-fitness night:19:00-03:00 video->health-and-fitness exercising time
C15(0.5%) 130.4 strategy, video, entertainment puzzle night:19:00-21:00 video->video video and entertainment
C16(0.1%) 236.8 tools, entertainment, books,personalization night:20:00-02:00 books->tools->books media reading

(around 30-60 mins) on one single game at night (C11 - C13),
doing exercises (C14), watching videos (C15), andmedia read-
ing (C16) with smartphones. All those tasks suggest mobile
devices are increasingly used for recreation.

Based on the mobile tasks we observed, we elaborate on the impli-
cations of our findings as below.

5.2 Implications
As we have discovered in our analysis, mobile users have common
requirements for engaging with multiple apps together, thereby
creating a need for an efficient app switching mechanism. Smart-
phone manufacturers can build smartphones with the operating
systems that aim to provide intelligent switching interface towards
improving the user experience. The switch interface can improve
user experience by absorbing the concept of shared intents in as
well as optimizing the layout design to support navigation between
recently used apps. This could enhance the effectiveness of the
workflow and improve users’ fragmented attention usage on the
smartphone. Those apps, such as communications, that users often
switch back and forth could be located in the key position when
designing the layout of that switch panel.

Screen management apps could help users manage their apps in
a more efficient way based on the typical tasks found in this paper.
Rather than managing apps solely based on their categories, they
can be organized based on tasks, taking into account users’ con-
textual information (e.g., time and location). For example, during a
weekend meal time, three apps (communication, food-and-drink,
and navigation apps) could be organized into a focused panel to
support the meal booking task for dining with friends (C1). Fur-
thermore, app developers should cooperate with other apps to
enrich their app experience by adding components of common
functionality, to which previously users have to switch back and
forth between different apps to access. For example, we found that
users need to switch between communication and search apps in
C4. App developers may want to add an additional function to
their communication app, like a search bulletin, or search results
pop-up. In summary, smartphone manufacturers, app developers
and anyone who impacts the way how apps are engaged on phones,
which apps are used and how people select apps to execute, should
no longer treat apps independently. They should take mobile tasks
into considerations.

6 CONCLUSIONS
No previous study has analyzed or addressed the automatic iden-
tification of mobile tasks. In this paper, we presented a method
that accurately determines mobile tasks from users’ app usage logs.
We showed that a set of temporal, similarity and log sequence
features used in combination can effectively predict mobile tasks.
When used independently, log sequence features, which capture
the hidden relationship between apps perform best. Our proposed
method to identify tasks outperform all baselines, even when they
are interleaved. We also showed that matching any pairs of logs
into one same task is a harder problem, compared to determining
task boundaries. This suggests that it may be better to first identify
task boundaries, and then extract app usage of specific tasks from
the identified task segments. Our research is an important first step
in modeling mobile app usage from the task perspective.

User behaviours are largely determined by their own goals, tasks
and preferences, so mining knowledge about user tasks from log
activity data can reveal different user intentions and behavioural
patterns. These can provide unique signals for user-centric op-
timization and personalization. Based on the task segmentation
and same-task identification models proposed in our work, future
research should investigate whether and how information about
tasks could be leveraged to improve mobile services. For instance,
incorporating models of task prediction into a mobile device infras-
tructure could improve the user experience in many ways. If the
mobile devices were able to identify the past apps and interactions
related to the user’s current long-term intent, this past information
could be retained and displayed to help the user re-establish the
context of a long-term mobile task, relieving them from the burden
of recalling past interactions. Furthermore, if we could predict that
a user was going to return to a task that has only been temporarily
suspended, the mobile device could help support future related app
interactions. As a second example, the extracted tasks could pro-
vide more fine-grained predictive contexts to improve services, such
as mobile search, allowing for a more personalized and engaging
experience. For example, the probability of issuing certain queries
might be higher after performing certain tasks [42]. Likewise, the
probability of completing certain tasks can be higher after different
types of mobile search interactions.

Our work sets the stage for evaluating mobile apps and services,
not on a per-app basis, but on the basis of user tasks. In future work,
we would like to incorporate more fine-grained user interactions



(e.g., contents browsed within the app) to identify mobile tasks.
We also intend to optimize user satisfaction in the context of the
mobile task, with the aim to improve mobile search (e.g., query
auto-completion and search re-ranking).
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