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ABSTRACT
With mobile devices, users are taking ever-growing numbers of
photos every day. These photos are uploaded to social sites such as
Facebook and Flickr, often automatically. Yet, the portion of these
uploaded photos being publicly shared is low, and on a constant
decline. Deciding which photo to share takes considerable time
and attention, and many users would rather forfeit the social inter-
action and engagement than sift through their piles of uploaded
photos. In this paper, we introduce a novel task of recommending
socially-engaging photos to their creators for public sharing. This
will turn a tedious manual chore into a quick, software-assisted
process. We provide extensive analysis over a large-scale dataset
from the Flickr photo sharing website, which reveals some of the
traits of photo sharing in such sites. Additionally, we present a
ranking algorithm for the task that comprises three steps: (a) group-
ing of near-duplicate photos; (b) ranking the photos in each group
by their “shareability”; and (c) ranking the groups by their likeli-
hood to contain a shareable photo. A large-scale experiment allows
us to evaluate our algorithm and show its benefits compared to
competitive baselines and algorithmic alternatives.
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1 INTRODUCTION
Digital photography, as enabled by smartphones, has changed the
way people take photos and interact through them. Prior to smart-
phones and high-quality phone cameras, people preferred looking
at photos together or in person over viewing them on a computer,
while e-mail was the main vehicle for digital sharing [9]. When
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phone cameras and image uploading and sharing became ubiqui-
tous, users started taking many ordinary and spontaneous photos of
family, friends, and travel. The phone turned into a tool for creating
and maintaining social relationships, sharing experiences (either
personal or collective), and self-expression and presentation [2, 24].
Specifically, automatic image uploading from mobile phones to
social media, such as Facebook and Flickr, or cloud storage, such as
Google Drive and Dropbox, soared in popularity. And while some
use the cloud to share all their photos (i.e., set their default sharing
to “public”), many others upload their photos privately, as a means
for backup or limited sharing with just friends or family [2, 16, 17].

This technological change led to new challenges with respect to
photo sharing. First, due to volume, many of the uploaded photos
remain part of a private repository, because users do not have the
time or state-of-mind to go over the photos they took and decide
which should be shared. Second, when users do go over their photos,
e.g., once a day, a week, or a month, they face a daunting task.
And while some users overcome it with a share-all policy, even
they would welcome software to help save their followers from
a deluge of boring photos. To back this intuition with data, we
analyzed millions of photos uploaded from smartphones to Flickr.
Our analysis shows that the total number of photos has been on
the expected rise, fueled by increasing popularity of mobile photos.
And yet, the portion of public photos has been on a constant decline.

To address these challenges, we propose the novel task of auto-
matic recommendation of photos from a private collection for the
purpose of public sharing. In other words, photos would be assessed
by their likelihood to be shared. The most likely ones would be
recommended to the user for the actual sharing act.

This novel task is by nomeans a simple one. Studies revealed that
human considerations when selecting photos for sharing involve
concerns about social disclosure, as well as factors that tradition-
ally influence privacy management, like family concerns or social
support [1, 2, 16]. While some of these considerations are personal
and difficult to model, we expect that shareable and non-shareable
photos can still be distinguished using automatic analysis.

Prior work found that digital camera users often take groups (or
“bursts”) of photos on the same object or scene, which are sometimes
referred to as near-duplicates [6, 15]. Our analysis shows that when
users manually select photos for sharing, they typically choose
at most one of the photos in each such group. In this work, we
therefore propose a three-step algorithm for the photo sharing
recommendation task. In the first step, the target photo collection
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Figure 1: Photo stream, ordered from left to right in its original form (1st line), after running the three-step algorithm (2nd
line), and after de-duplication (3rd line).

is segmented into near-duplicate groups. The algorithm then ranks
the photos in each group by their likelihood to be shared. Finally,
the groups themselves are ranked by their prospects to contain
shareable photos. Following, we evaluate the final recommendation
of photos for sharing under two alternative usage scenarios, in
which, either: (a) de-duplication is important; or (b) duplicates are
acceptable. If duplicates are unwanted, only the top-ranked photo
from each group is presented to the user. Otherwise, several (or all)
photos from each group are shown, ordered by the groups’ ranking
on top of their in-group ranking.

Figure 1 demonstrates the output of our algorithm on a daily
photo stream contributed by one of the authors. First, the algorithm
segments the stream into three scenes (whiteboard, child, fountain),
each composed of between one and three near-duplicate photos.
Then it ranks the photos in each group by their likelihood to be
shared (e.g., ranking the photo of the fountain without the disrupt-
ing car first, or ranking the photo that best captures the child’s face
first). Then, the groups themselves are ranked by their likelihood
to include a publicly shareable photo. Finally, de-duplication is per-
formed (assuming it is desired in this case), leaving one photo per
group on the final recommendation list.

We address all three steps in our approach as supervised sub-
tasks. We consider near-duplicate grouping as a sequential seg-
mentation of the photo collection over time and learn a threshold
over similarity functions, given a training dataset. In addition, both
group ranking and photo ranking within each group are treated
as learning to rank (LTR) tasks. We trained our LTR models on a
large dataset consisting of daily uploads of smartphone photos to
Flickr, where (only some) photos are manually marked as public by
the account owner. The goal in the LTR tasks is to rank the public
(shared) photos and groups higher, as compared to the private ones.

We note that many works addressed the task of summarizing a
photo collection [10, 15, 19, 21–23], but only a few recent studies
suggested to select or recommend “interesting” photos from an
album without the goal of summarizing the whole album [5, 25]
(for more details, see Section 5). While we share some perspectives
to these studies in terms of the algorithmic approaches and derived
features, our task is inherently different: identifying private photos
that are interesting for public sharing, as opposed to photos that

are interesting as personal representatives of an album, or that are
selected from already public collections.

To evaluate our algorithm, we conducted a large-scale experi-
ment over hundreds of thousands of photos. We evaluated each
sub-task of our algorithm, as well as the overall goal of recommend-
ing photos for sharing. We compared our three-step algorithm to
a direct single-step algorithm that ranks all photos individually
without the notion of groups. We also compared our algorithm to
baselines such as the last photo taken or the most aesthetic photo.
Our results indicate that our algorithm outperforms the respective
baselines in each step, as well as in the overall recommendation
task, regardless of whether de-duplication is desired or not.

To summarize, the main contributions of this paper are:
• Introducing a novel task of automatic recommendation of photos
for sharing.

• Analyzing sharing behavior by Flickr users using smartphones.
• Suggesting a three-phase approach for the task, with a supervised
algorithm for each stage, using a learning-to-rank framework.

• Implementing and evaluating the suggested approach using a
large-scale log of selective sharing activity by Flickr users.

2 DATASET CHARACTERISTICS
To learn more about users’ photo sharing behavior in social net-
works we analyzed Flickr, a popular social network focused on
photos. Our dataset consists of basic metadata for all Flickr photos
in the years 2004–2015. This metadata includes the date the photo
was taken and the camera model it was taken with (available for
over 80% of the photos). It also includes the sharing permissions of
each photo, as set by the photo owner: at one extreme, private and
accessible to the photo owner only; at the other extreme, public
photos accessible to all users; and in-between, photos accessible to
user-defined lists of friends, family, or both.

Our dataset indicates that the number of photos on Flickr rises
every year. For example, in 2015 it was ×2.5 compared to 2012 and
×16 compared to 2004. This is driven by the increase in mobile
photos — the portions rise from close-to-zero in 2004 to over 50%
in 2015. Overall, in our dataset, 58% of the photos are private, 30%
are public, and only 12% are in the middle ground for friends and
family. In this work, we focus on the behavior of public sharing and
leave its differences from limited sharing (with friends or family)
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Figure 2: Portion of public photos per year for all Flickr pho-
tos and for mobile photos only.

Table 1: Characteristics of all photos and public-only pho-
tos in our experimental dataset: total counts and statistics
of photos per user-day.

Total Avg Std Med Min Max
All photos 10.3M 58.8 110.1 31 7 7,804
Public photos 402K 2.3 4.3 1 1 191

for future work. We henceforth refer to all types of restricted access
as “private” (70%).

Figure 2 shows the portion of public photos by year, for all photos
and for mobile photos. From 2004 to 2008, the percentage across
all photos increased, from 17.9% to a peak of 46.5%. Since then it is
decreasing, down to 17.0% in 2015. One explanation to this sharp
decrease is that many photos are submitted via automatic uploaders,
which back up all the device photos and whose default permission is
private (due to the sensitivity of this feature). Automatic uploading
has become especially prevalent in mobile devices in recent years.
Indeed, the percentage of public photos within all photos uploaded
from mobile devices is much lower than within all photos (starting
2008). Combining this statistic with the surge in overall percentage
of photos that originated frommobile devices points at the declining
public photo percentage since.

Given our objective to predict which photos would be publicly
shared by their owner, we constructed a more goal-oriented dataset.
To this end, we focused on Flickr data from mobile devices in the
years 2012–2016. We considered all unique pairs of users and calen-
dar days, henceforth referred to as user-days. Each user-day consists
of all photos taken by a single user in a single day, allowing us to
examine sharing behavior at a one-day granularity. The average
number of photos per user-day in our data is 7.9 (std: 20.3, median:
3, max: 13,231), with 30.2% of the days having one photo only. As
we have seen before, most mobile photos are kept personal. Indeed,
91.8% of our user-days contain no public photos. On the other hand,
in 6.9% of our user-days, all photos are public. For our experiments,
however, we were interested in days for which both private and
public photos exist, and in particular days for which the majority
(but not all) of the photos are private, as these imply an explicit
selection for sharing. After some analysis, we opted for user-days
in which no more than 15% of the photos (but more than zero) are
public1.

The above selection left us with 177K user-days and 10.3M pho-
tos, to which we refer as the experimental dataset. Table 1 shows
the characteristics of this dataset. Overall, the vast majority of the
photos are private, with an average of 58.8 photos per user-day,
1Notice this implies each user-day includes at least 7 photos in total.

of which only 2.3 are public. The percentage p of public photos
per use-day spreads rather evenly across the range (0%, 15%], with
an average of 7.8% (std: 4.1, median: 7.7%). For 30.8% of the user-
days, 0%<p⩽5%; for 37.7% of the user-days, 5%<p⩽10%; and for
31.5%, 10%<p⩽15%. Finally, we note that the experimental dataset
includes a large number of distinct users: 52.9% of them account
for only one user-day in the dataset; additional 15.5% account for
two user-days; and the maximum number of user-days per user is
828. In our experiments, unless otherwise stated, we randomly split
the dataset into 90% training user-days and the rest for testing.

3 RECOMMENDING PHOTOS TO SHARE
3.1 Motivation and Overview

3.1.1 Algorithmic Approach. Our proposed algorithm consists
of three steps. First, the target photo upload2 is segmented into
groups of near-duplicates. The algorithm then ranks the photos
within each group based on their likelihood to be shared. Finally,
the groups themselves are ranked by each group’s likelihood to
contain at least one shareable photo.

We support and experiment with two alternative recommenda-
tion scenarios: (a) the user prefers not to see near-duplicates, only
a single exemplar from each scene; and (b) the user does not mind
duplicates, as long as shareable photos are ranked high. Our algo-
rithm generates the top N photos comprising the recommendation
list, and can then be used in one of two ways. If near-duplicates are
unwanted, the top-N groups that were ranked in the third step are
selected. Then, the top-ranked photo from each group is considered,
generating a ranked list of N photos. Alternatively, if de-duping is
not essential, the recommendation list includes the top k>1 photos
from each group, concatenating them to a single list according to
the group rankings.

3.1.2 Latent Vector Representation of Photos. Throughout the
steps of our algorithm, we use a representation consisting of a 4K-
dimensional vector for each photo. This latent vector was generated
using a deep neural network model. Specifically, we utilized the
YFNet-B network, which is used to power Flickr’s automatic textual
tags feature [? ]. This network’s training goal is different than ours,
and its final layer performs classification over ∼5,000 tags. Yet, the
output of the penultimate layer can be viewed as a compressed
“semantic” representation of the input photo, which is then used
for inferring which tags are relevant to it. We used this output as
our latent vector representation.

The full neural network includes 4 stages. In the first stage, 64
filters of size 7x7 each are applied, with stride 2. In the second
stage, two layers of 128 filters are used, each factored by a 3x1 filter
following by 1x3 filter, all with stride 1. The third stage consists of
256 filters, each similar to those in stage two (a 3x1 filter followed
by a 1x3 filter, all with stride 1). Finally, the forth stage consists of
two layers of 512 filters followed by a layer of 256 filters. All filters
are similar to those in stages 2 and 3. Each convolution layer applies
batch normalization and ReLU for non-linearity. The network was
trained over the YFCC dataset [? ], which consists of 100M photos
with textual tags assigned by Flickr users. For further details see [?
].

2In our experiments, these are daily mobile uploads.



Table 2: The different features and the steps in which they
are used. Except for group-size features, group features are
various aggregations over the feature score of all photos in
the group: avg, std, variance, median, min, and max.

Feature Name Step Step Step 3 Step 3
1 2 representative group

color histogram diff. ×

4K latent vector × × ×

color distribution × ×

1,600 semantic tags × ×

inappropriateness × × ×

aesthetics × × ×

first in group × ×

last in group × ×

position from start × ×

position from end × ×

time delta from prev × × × ×

time delta from next × ×

time delta from first × ×

time delta from last × ×

max photo score × ×

group size (numeric) ×

10 group size indicators ×

We next detail the three steps in our algorithm, as well as the di-
rect ranking algorithm. As a companion reference, Table 2 provides
a summarization of all features used in each of the three steps.

3.2 Segmentation into Near-Duplicate Groups
As mentioned, we follow prior work that proposed to group photos
which are considered near-duplicates [6, 15, 20]. To this end, we
extracted a dataset consisting of 70 user-days3. Two of the authors
annotated them for near-duplicate groups following three guide-
lines: (i) the photos in the group should capture the same scene; (ii)
the photo subject stays the same within the group; and (iii) a user
would not want to share more than one photo from the group.

Within each time-ordered stream of photos, we considered only
consecutive photos as possible near-duplicates. Thus, annotators
scanned the photo stream once, marking each photo that did not
meet the guidelines for the current group as the beginning of a new
group. Preliminary analysis showed that if the time gap between
two photos is more than 15 seconds, they are rarely considered
duplicates. We therefore automatically marked such cases (55% of
all photos in our sample) as starting a new group, prior to any
manual annotation, and excluded them from our gold dataset. This
way, we directed the learning task to focus on the more difficult
cases. In total, the two annotators labeled 1,486 photos with Cohen’s
kappa agreement of 0.77, measured on a shared subset of 130 photos.
Overall, 70% of these photos were annotated as near-duplicates.

We constructed three features to be used as input for a classifier
that determines whether a photo starts a new group (i.e., not a near-
duplicate) or continues the previous one (i.e., a near-duplicate). The
first two features have already been proposed in prior work on near-
duplicates [15, 20]: (a) the time difference (in seconds) between the
photo and its predecessor in the photo stream; and (b) the difference
between the color histograms of the two photos. We computed the
overall histogram difference by averaging the histogram difference
for each RGB color, calculated using Hellinger distance.

Color histogram captures photo similarity at a rather low level.
To compare photos at a more “semantic” level, we computed the
3Since this task involved looking at personal data, we only considered photos from
users who explicitly gave consent for their data to be used for research purposes.

cosine similarity between their latent vector representation, as
described in Section 3.1.2. This high-level similarity was taken as a
third feature, which, to the best of our knowledge, is novel for the
near-duplicate task4.

Considering the three features and our labeled gold dataset, we
examined four types of classifiers for the near-duplicate task (using
Weka [? ]): logistic regression, support vector machine (SVM) with
a Gaussian RBF kernel, C4.5 decision tree, and random forest. We
used leave-one-out cross-validation to evaluate the performance of
each algorithm. In each fold, we performed ten-fold cross-validation
over the training set, for hyper-parameter tuning.

3.3 Ranking Photos Inside a Group
Applying group segmentation as described above on our entire
experimental dataset showed that very small portions of the near-
duplicate groups include more than one shared photo (full details
are provided in Section 4). We therefore expect that when users
share photos from such a group, they would often select the most
appealing in terms of public view. Following, the second step of
our algorithm selects the best “shareable” photo(s) within each
group. We address this selection as a supervised ranking task, in
which the goal is to rank photos that are likely to be shared above
non-shareable ones.

To this end, we culled the experimental dataset to only include
groups that contain at least one shared photo and one non-shared
photo, since only these are useful for training and evaluating the
in-group ranking task. We then trained a learning-to-rank (LTR)
algorithm, where the target was to rank, in each training group,
the shared photos higher than the non-shared ones. As our LTR
framework we used an online variant of SVMRank [3] with AROW
update [8], whose performance was found competitive for large-
scale ranking [4]. The final score provided by the ranker for the
top-ranked photo is denoted as the max photo score.

As input to the LTR algorithm, we derived from each photo a set
of features (see summary in Table 2). Two types of features were
considered. The first type refers to features that are extracted from
each photo independently. As low-level features, we computed a
distribution over a set of 16 main colors in each photo (red, blue,
yellow, green, etc.). As high-level features, we included the 4K-
dimensional latent vector described in Section 3.1.2. Additionally,
we computed semantic features per photo, which were derived from
the latent vector. These include automatically-derived semantic
tags, such as ‘dog’, ‘baby’, and ‘beach’, each with its likelihood
probability [? ]. We filtered out tags with likelihood smaller than
0.5, resulting in a sparse tag set of only a few tags per photo. Yet,
these tags may help identify photo objects that are attractive for
sharing, or vice versa. For example, we noticed that the ‘child’
tag correlates negatively with shareability. We also assessed the
likelihood of a photo to be inappropriate (e.g., for nudity) based
on an in-house training set manually labeled for appropriateness.
We expect this feature to help in demoting embarrassing photos.
Finally, following prior work that found aesthetics to be useful in
photo selection [19, 21], we used the approach of Zhang [27] to

4We also experimented with calculating similarity between the photos’ derived tags,
however this measure performed poorly, due to the low number of distinguishing tags
per photo.



compute a single feature whose (continuous) value estimates the
degree of aesthetics for each photo.

The second type of features for each photo refers to its rela-
tionships with other photos in the group. These include position
features: (a) is the photo first in the group?; (b) is it last?; (c) its
ordinal position from the group’s start; and (d) its position from the
end. These features assess whether group position affects photo
selection for sharing. We also included features capturing the time
delta (in seconds) of the photo from: (a) the previous photo in the
group; (b) the next photo; (c) the first photo; and (d) the last photo.
These features may help in pointing at various photography efforts
as captured by different pause and activity periods.

3.4 Ranking Photo Groups
The third and final step in our algorithm, denoted by L2RGroups,
ranks the segmented photo groups as a whole. Its goal is to place
groups that are expected to contain at least one shareable photo
on top of groups whose photos are expected to not be shared. We
treat this ranking sub-task as a supervised ranking task, employing
the same LTR framework of online SVMRank with AROW update
used in step 2 (Section 3.3).

In step 2, the ranked objects were photos within a single near-
duplicate group, labeled as either shared or not. Therefore, the
ranker would aim to find subtle differences between photos that
indicate shareability. Here, on the other hand, the objects are groups
within each daily user upload, and each group is labeled as shared
only if it contains at least one photo that is labeled as shared. We
therefore expect the ranker to rely on more coarse differences
between the groups, to distinguish between different scenes, such
as a sunset versus parking cars.

As input to the ranker, we derive two types of features from each
group. First, we consider all the features extracted for a single photo
in step 2, as well as the max photo score provided by the ranker in
step 2. To this end, a single photo is selected for each group, from
which these features are extracted. Notice that this selection may
not necessarily be the same as the selection of shareable photos as
derived from the in-group ranking (step 2): here we aim to select a
photo representative of the group that would distinguish it from
other groups, while at step 2 we aimed to identify the photos in the
group that are most likely to be shared. In fact, since we hypothesize
that the ranker would look for more coarse-grained differences
between photos for the group ranking task, we expect any photo
selection rule to be useful here. We examine this hypothesis below,
when analyzing group ranking results (Section 4.3).

Features of the second type are derived from the group as a
whole. These include the group’s size, both as a single numeric fea-
ture and as a set of 10 binary bucket features (with the last feature
referring to size 10 or higher). In addition, we generated aggregate
group statistics for some photo features: aesthetics, inappropriate-
ness, max photo score, and time delta from previous photo. These
statistics include the average, median, variance, standard deviation,
minimum, and maximum within the group for each target feature.

3.5 Ranking Individual Photos
As already mentioned, an alternative approach that addresses the
shareable group recommendation task is an algorithm that ranks

Table 3: Classifier performance comparison for the near-
duplicate grouping task.

Classifier Accuracy (%)

Random forest 84.7
SVM (RDF kernel) 84.2
C4.5 decision tree 84.1
Logistic regression 82.6

all photos by inspecting each one individually, without considering
the notion of a group. We implemented this algorithm, denoted as
L2RIndPhotos, using the same LTR framework of SVMRank with
AROW update, and trained the model on user-days, with the goal
of ranking shared photos higher than non-shared ones. As features
for each photo, we used the features extracted in step 2 (see Table 2),
but ignoring any features that are derived from relationships with
group members.

We note that L2RIndPhotos can also be applied to a scenario
where de-duping is desired. This can be achieved in a post-processing
step, where each photo that belongs to the same group as a higher-
ranking photo is removed from the ranked list. This way, we can
also adapt L2RIndPhotos for group ranking in a drill-down scenario
(see Section 3.1). To this end, after de-duping is performed, each
photo in the recommendation list, which represents a single group,
can be replaced by its corresponding group.

4 EXPERIMENTS
In this section, we describe our main experimental results. These
include evaluation for step 1 – near-duplicate group segmentation;
step 2 – ranking photos within each group; and step 3 – group
ranking. Finally, we describe our evaluation of the full-fledged
pipeline for recommending individual photos for sharing, either
with or without duplication.

4.1 Near-Duplicate Grouping Evaluation
Our algorithm’s first step aims at grouping the stream of photos
into near-duplicate groups. In Section 3.2 we defined this as a binary
classification task, and set out to evaluate four types of classifiers
over our manually-annotated gold dataset. Table 3 presents the
accuracy of each of the four algorithms. The random forest model
achieved the best performance and was therefore our final choice.
Its accuracy using all three features was 84.7%. In practice, the
overall accuracy of group segmentation is even higher, since photos
taken over 15 seconds after their predecessors are automatically
considered as non-near-duplicates, as explained in Section 3.2.

Ablation tests using the random forest model (Table 4) show
the advantage of high-level similarity. Using this feature alone,
the classifier achieved 83.0% accuracy. On the other hand, leaving
high-level similarity out, while only considering time difference
and color-histogram similarity, as in previous studies [15, 20], led
to a substantively lower accuracy, at 75.1%. This shows that this
task requires semantic understanding of photos, while low-level
information is insufficient.

4.1.1 Grouping Statistics. As pre-processing for the next algo-
rithmic steps, we used the random forest model, learned on the
entire gold dataset with all features, to group near-duplicate pairs



Table 4: Ablation tests for near-duplicate detection using a
random forest classifier. time stands for the time-difference
feature, colsim for color-histogram similarity, and hiдhsim
for the latent-vector (high-level) similarity. Accuracy is pre-
sented both when using only the respective feature (‘Only’)
and when using all features but the respective feature (‘Ex-
clude’). ‘Exclude’ for all-features (i.e., no features) reflects
always selecting the majority class.

Feature Set Acc. – Only (%) Acc. – Exclude (%)

all features 84.7 70.0

hiдhsim 83.0 75.1
t ime 73.8 84.5
colsim 69.4 84.5

Table 5: Distribution of photos in our experimental dataset
by the size of their associated group (‘%’), the portion of
groups with at least one shared photo (‘% shared (groups)’),
and the likelihood of an individual photo from the group to
be shared (‘% shared (photos)’).

Group Size 1 2 3 4 − 5 6 − 10 11+

% 43.8 20.5 9.1 9.8 8.8 8.0

% shared (groups) 4.6 7.5 10.9 12.4 14.9 21.0
% shared (photos) 4.6 4.0 4.0 3.3 2.6 1.9

with time delta of 15 seconds or less in our experimental dataset.
This pre-processing resulted in an average of 35.9 groups per user-
day, 9% of which containing at least one publicly shared photo.

Table 5 shows the distribution of photos by the size of the groups
they belong to. The majority of the photos belong to a non-trivial
group (i.e., size greater than 1), which indicates that near duplicates
are common in mobile photography and are therefore important to
consider when designing a sharing recommendation algorithm.

Another important aspect of our segmented dataset is that only
1.0% of the non-trivial groups include more than one shared photo
(8.6% of these groups have exactly one shared photo), indicating
that indeed users typically do not bother to share more than one
photo out of a near-duplicate group. Even for groups of size greater
than 5, the percentage of groups with more than one shared photo
is only 3.3% (16.4% have one shared photo). Table 5 shows that as
group size grows, the chances of the group to contain a shared
photo increase, but the likelihood of each individual photo in the
group to be shared drops.

An additional interesting statistic is shown in Table 6 – the
distribution of time delta between consecutive photo pairs in groups.
As seen, a substantial portion of the pairs has a time difference of
zero seconds, often the result of an automatic camera feature that
takes more than one photo per shooting, e.g., photos with different
exposure or photos with and without high dynamic range (HDR).
In addition, most other pairs are within 1 to 5 seconds from each
other, indicating rapid photography in order to capture a “good”
photo of a single scene.

Table 6: Distribution (percent) of consecutive photo pairs
within groups by time difference (in seconds).

Time Delta 0 1 − 5 6 − 10 11 − 15

group size>1 36.6 41.4 14.6 7.4
group size>5 44.8 43.9 8.0 3.3
group size>10 50.8 42.0 5.3 1.9

Table 7: Performance of in-group ranking algorithms.

Algorithm P@1 MRR

Chronological 0.301 0.591
Random 0.372 0.626
Distance from centroid 0.422 0.649
Reverse-chronological 0.430 0.660
Aesthetics 0.467 0.683
In-Group-LTR 0.520 0.721

4.2 In-Group Ranking Evaluation
The goal of our algorithm’s second step is to learn to select the
photos from a near-duplicate group, which are more likely to be
shared compared to others in the group. For training and evaluation,
we only considered groups with at least one public photo and at
least one private photo, as explained in Section 3.3. Overall, our
filtered dataset included 162K such groups across 82K different user-
days, spanning a total of 684K photos. We compare our algorithmic
approach, denoted further on by In-Group-LTR, to several baselines:
(a) random order; (b) chronological – ranking by the time the photo
was taken, from earliest to latest; (c) reverse-chronological; (d)
distance from the centroid of the group, where the centroid is
calculated over the entire feature space; and (e) aesthetics – ranking
by the photo’s aesthetic score, from highest to lowest. We used
Precision@1 (P@1) as our main metric for this task, to reflect a
selection of a single photo per group (i.e., duplication is not desired).
For completeness, we also report the Mean Reciprocal Rank (MRR),
which reflects the position of the highest ranking shared photo.

Table 7 reports the results. The chronological baseline yields the
lowest performance, even lower than random, implying that the
first attempt in a group is often a bad choice for sharing. Reverse-
chronological ranking, on the other hand, is a better alternative,
outperforming both a random choice, and, by a smaller margin, the
distance from the centroid. We conjecture that the last photo in
a group sometimes indicates user satisfaction with the outcome:
after a good shot, no more are needed. Ranking by aesthetic score
achieves even better performance, indicating that taking into ac-
count photo characteristics is preferable to simply considering its
position within the group. Finally, our In-Group-LTR algorithm
yields a further considerable performance enhancement, up to 52%
in P@1, showing the benefit of learning to combine several high-
level “semantic” and group-related features.

To further understand the contribution of the different feature
categories to the task, we performed ablation tests by training the
In-Group-LTR algorithm with each feature category by itself and,
in addition, with all features excluding it. Results, presented in Ta-
ble 8, indicate that the latent vector is the most valuable category,
achieving high performance by itself (over 50% in P@1). It seems to
encode aesthetics well enough, since the exclusion of the aesthet-
ics score hardly has any effect. These results are consistent with



Table 8: Performance when using (‘Only’) or removing (‘Ex-
clude’) subsets of features when training In-Group-LTR.

Feature Set Only Exclude

P@1 MRR P@1 MRR

Position within group 0.394 0.638 0.520 0.721
Time delta within group 0.419 0.660 0.520 0.720
Aesthetics 0.467 0.683 0.519 0.721
Semantic tags 0.486 0.700 0.516 0.718
Latent vector 0.505 0.711 0.512 0.715

All Features 0.520 0.721

Table 9: Performance of group ranking algorithms.

Ranking Algorithm P@1 MRR MAP

Random 0.090 0.242 0.218
Chronological order 0.146 0.277 0.257
Reverse-chronological order 0.164 0.300 0.279
Maximum aesthetic score 0.201 0.369 0.331
Group size 0.214 0.384 0.359

L2RIndPhotos 0.266 0.431 0.387
L2RGroups 0.310 0.470 0.427

L2RGroups – group features only 0.145 0.276 0.256
L2RGroups – no group features 0.304 0.465 0.421

the high performance achieved by high-level similarity features
for the segmentation task (Section 4.1) and suggest this type of
representation works well. In addition, semantic tags are useful,
and combining any two of the three high-level categories (tags,
aesthetics, and latent vector) results in performance similar to the
full feature-set.

4.3 Group Ranking Evaluation
We next evaluate the sub-task of ranking groups by their likelihood
to contain shared photos. Our training and test sets for this task
are based on the experimental dataset described in Section 2. As
evaluation metrics, we use Mean Average Precision (MAP) in addi-
tion to P@1 and MRR, since we are also interested in performance
beyond the first hit (i.e., the first group with a shared photo). As
discussed in Section 3.1, this sub-task also reflects a “drill-down”
recommendation approach, in which groups are shown first and
the user can then choose to view all photos of a specific group.

As mentioned in Section 3.4, the L2RGroups algorithm derives
some of its features from a single representative photo within the
group. The selection of the specific photo from which these features
are derived is different in nature than the photo ranking task in step
2, which also involves the selection of photos from a near-duplicate
group. Yet, here we are using the individual photo’s features to de-
rive more coarse-grained differences between groups, rather than
subtle ones between individual photos within the same group. We
therefore hypothesized that the selection of the specific photo from
which the single-photo features are derived is not critical for the
group ranking task. This hypothesis was proven correct: using
different selection methods, such as first/last in group, highest aes-
thetic score, In-Group-LTR, and even random, yielded very similar
performance for L2RGroups. For convenience, we opted to use In-
Group-LTR as our representative selection method, yet as explained
this is a rather arbitrary choice.

The direct algorithm L2RIndPhotos, which ranks photos indi-
vidually, can be adapted to the sub-task of group ranking (Sec-
tion 3.5). Following, Table 9 presents the performance of L2RGroups
and L2RIndPhotos for group ranking, as well as various baselines.
L2RGroups achieves the best performance across all metrics, by a
large margin from L2RIndPhotos and the baselines. L2RIndPhotos
performs better than the baselines, even though it does not include
any group-related features. Among the baselines, ranking by group
size, which does not consider any photo characteristics, achieves
best performance. Indeed, Table 5 shows that larger groups are
more likely to include a shared photo.

The bottom section of Table 9 shows the performance of L2RGroups
with group-related features only and without them. It is clear that
group features by themselves do not achieve high performance. Yet,
their exclusion leads to some performance decline, indicating that
they do contribute to the final model.

4.4 Photo Recommendation Evaluation
Finally, we tested the performance of different algorithms for the
overall task of recommending photos to be publicly shared. We
considered the following algorithms for the overall task: (a) Chrono-
logical - recommend the photos by the time they were taken (ear-
liest first); (b) Reverse-chronological; (c) Aesthetic score – recom-
mend the photos by their aesthetics (from highest to lowest); (d)
L2RIndPhotos– learning to rank individual photos in a single step;
and (e) ThreeStepRanking– our three-step algorithm, which seg-
ments into groups, ranks photos in each group (In-Group-LTR), and
then ranks the groups (L2RGroups).

We evaluated two recommendation scenarios (see Section 3.1): (a)
without filtering of near-duplicates; and (b) retaining only the top
k photos in each near-duplicate group. When k=1, de-duplication
yields a recommendation with only a single photo per group. For
all algorithms that are unaware of groups, such as L2RIndPhotos,
de-dupping can be performed as a post-processing step (Section 3.5).
Evaluation is performed over the entire experimental dataset as
described in Section 2. As evaluation metrics, we use MRR, P@K,
and Recall@K (R@K), with K ∈{1, 3, 5}, which enables us to inspect
performance at different fixed recommendation list sizes.

Table 10 depicts the results for this experiment. Inspecting the
algorithms’ performance with de-duplication, both LTR algorithms
significantly outperform all baselines. For example, L2RIndPhotos
improves P@1 by 44% compared to the strongest baseline – aesthetic
score. Yet, ThreeStepRanking performs substantially better, with an
additional gain of 14.4% over L2RIndPhotos in MRR, and 17.5% in
P@1. This gap in performance is consistent across all metrics and
different recommendation list sizes, showing that splitting between
group ranking and photo ranking within groups provides a leverage
in ranking shareable photos high.

Interestingly, while increasing the size of the recommendation
list enables the display of more shared photos (an increase of 95% in
recall from R@1 to R@3, and of 29% from R@3 to R@5), precision
substantially drops (a decrease of 69% from P@1 to P@3, 79% from
P@3 to P@5). This shows that even for the top recommendations,
it is quite difficult to identify the photos that will eventually be
shared by the user. One reason may be that the choice of a single



Table 10: Performance of shareable photo ranking algo-
rithms with de-duplication (k=1, 2) and without it. The best
result(s) in a column are boldfaced.

Ranking Algorithm MRR P@1 P@3 P@5 R@1 R@3 R@5

D
e-
du

p
(k
=
1) Chronological 0.215 0.118 0.081 0.069 0.087 0.169 0.235

Reverse-chronological 0.229 0.127 0.090 0.077 0.094 0.187 0.258
Aesthetic score 0.272 0.143 0.110 0.095 0.105 0.234 0.323
L2RIndPhotos 0.332 0.206 0.143 0.115 0.150 0.293 0.380
ThreeStepRanking 0.380 0.242 0.167 0.132 0.177 0.345 0.445

(k
=
2) L2RIndPhotos 0.357 0.215 0.153 0.124 0.156 0.315 0.417

ThreeStepRanking 0.388 0.242 0.167 0.135 0.177 0.349 0.459

N
o
D
e-
du

p Chronological 0.228 0.120 0.084 0.071 0.089 0.173 0.242
Reverse-chronological 0.244 0.127 0.090 0.077 0.094 0.187 0.258
Aesthetic Score 0.300 0.152 0.117 0.102 0.112 0.250 0.357
L2RIndPhotos 0.369 0.218 0.157 0.127 0.158 0.324 0.430
ThreeStepRanking 0.384 0.242 0.159 0.128 0.177 0.334 0.439

photo within a near-duplicate group may sometimes be arbitrary
(all photos look the same) and therefore hard to reproduce.

If duplicates are allowed, the performance of L2RIndPhotos, which
was trained for this scenario, improves by 5% to 10% in all metrics
compared to the de-duplication scenario. On the other hand, the
performance of ThreeStepRanking somewhat decreases for longer
recommendation lists, yet it remains the best performing algorithm.
Under the scenario where only two photos are shown per group
(k=2), ThreeStepRanking performs best over all metrics, with a 3%
increase in R@5 compared to full de-dupping. This scenario bal-
ances between showing a few alternatives from each group but
still not over-populating the recommendation list with a single
large group. Overall, these results indicate that ranking all photos
is not the best option, especially when large groups are ranked
high, from which only a single photo is usually shared (recall Sec-
tion 4.1). We note that we also tested other values of k and found
that ThreeStepRanking achieves its best performance when k=2,
while L2RIndPhotos’s best performance is with no de-duplication.

5 RELATEDWORK
The task we present in this paper – recommending private photos
for public sharing – is novel. Yet, a large body of work considered
related tasks in which photos are selected from a collection to rep-
resent or summarize the collection. We now describe some of these
works, which influenced our algorithmic approach, the features
used, such as aesthetic score, color histogram, semantic tags, and
latent vectors, and the selected baselines.

Li et al. [15] created a summary of photos of a target event.
They noticed that the closeness in photo acquisition time implies
related image content, constituting a single scene within the event.
Following, they segmented the photo stream into groups using
timestamp and color-histogram differences. Then, the best photo in
each scene was added to the summary. Their best-photo selection
was based on identifying clear faces, assuming those are desired in
a summary. Platt et al. [20] applied a similar approach using times-
tamp and color histogram similarities for segmentation. Graham
et al. [10] inspected timestamp burstiness for creating clusters in
a photo stream. They then selected cluster representatives, based
on time differences, to form a summary, while ranking clusters by
size. Chu and Lin [6] used Platt’s timestamp-based clusters and
then constructed a near-duplicate graph for each cluster, where

edges indicated near-duplicate pairs. A representative was then
selected to be the photo with the highest in-degree count. Other
works examined unsupervised and supervised clustering of photo
collections by events or by points of interest [7, 14, 18].

When summarizing a photo collection, different approaches con-
sidered complementing aspects, such as coverage and diversity.
Singha et al. [22] summarized personal photo logs spanning sev-
eral months. They introduced a framework that optimized over
attractiveness, diversity, and coverage, as well as a concrete greedy
algorithm. The photo factors were based on camera (EXIF, times-
tamp) and pixel features, as well as user-generated textual tags,
face recognition, and photo location. Obardor et al. [19] composed
a summary of a photo stream by splitting it into acts, i.e., long se-
quences of similar photos. They then selected photo representatives
by combining aesthetics and narrative components. Guldogan et
al. [11] automatically constructed a set of “interesting” photos by
considering the view duration and the number of clicks for each
photo in the user’s photo collection. Tschiatschek et al. [23] summa-
rized photo streams by evaluating each subset of the collection for
coverage and diversity using a supervised mixture of sub-modular
components. The components inspected how well a subset was sim-
ilar to the whole collection, with similarity as a proxy to coverage
and inner-subset dissimilarity as a proxy to diversity.

Several studies addressed the summarization of a collection of
photos taken by several users. Jaffe et al. [12] defined collection
summarization as a ranking task, in which the top K photos were
selected after ranking. Their algorithm produced a hierarchical
clustering of the photos based on their geo-location. Then, each
cluster was scored by considering factors such as user and tag
distinguishability and photo quality. Finally, the photos were recur-
sively ranked by interleaving photos from prominent sub-clusters.
Yang et al. [26] considered collections in which time settings are
not calibrated. Their algorithm aligned the collections using vi-
sual and geo-location similarities. It then removed duplicates using
greedy backward selection. Sadeghi et al. [21] grouped photos in
multi-user collections, even when chronological boundaries were
broken. They used a graphical model that considered the quality
of a photo as well as pairwise similarity between all pairs in the
album. The model was trained over manually-curated albums via
Mechanical Turk. Photo features included face features, texture and
color features, and photo aesthetics.

Recently, several works suggested to diverge from the traditional
summarization approach, whose primary goal is to cover a target
photo collection. Ceroni et al. [5] argued that a subset of important
photos for a user need not cover all her collection. They proposed
to select the top K photos deemed most important from a personal
collection. They trained an SVM classifier on collections with self-
labeled most important photos, and used it to rank the photos in a
collection. Their features included quality-based aspects, such as
contrast and blur; face recognition; high-level concept detection;
and aggregate properties of the time-based clusters. Wang et al.
[25] suggested that different types of albums may benefit from
different types of importance prediction. They collected public
photo “albums” (photos sharing many tags) from Flickr and tagged
their types with Mechanical Turk. The annotators also marked the
importance of each photo. They then trained a convolutional neural



network in two stages, first to predict importance, then re-training
the network’s output stage for each album type.

6 CONCLUSIONS AND FUTUREWORK
We introduced the novel task of recommending private photos for
public sharing. Such recommendation is especially helpful with the
ubiquitous automatic upload, where mobile phone users need to
sift dozens of photos that are uploaded daily into social networks
and cloud storage services. We presented a three-step supervised
ranking algorithm, which first groups together near-duplicates,
then selects the best photo candidates for sharing in each group, and
finally ranks groups by their likelihood to include a shareable photo.
The selected photos from the top ranked groups are presented to
the user as recommendations for sharing.

We conducted a large-scale experiment over a dataset of millions
of photos uploaded from mobile phones, in which the owners of
the photos manually selected just a few to be shared. Our algorithm
outperformed other alternative algorithms and baselines, placing
photos that were indeed shared higher on the recommendation list
than the competitors.

To enable evaluation at large scale, we relied on a specific type of
user behavior on Flickr, reflected by selective sharing of photos per-
user per-day. As we showed, this data is diverse and derived from
a large number of users, yet it may still limit the generalizability of
our findings to some extent. Future research is needed to validate
and extend our results in other settings. In addition, future work
could also examine more fine-grained types of sharing, other than
public, such as with family or friends only, or with communities [?
], and study the differences in sharing behaviors among the various
sharing types.
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