
Fun Facts: Automatic Trivia Fact Extraction from Wikipedia

David Tsurel
The Hebrew University of

Jerusalem
dmtsurel@cs.huji.ac.il

Dan Pelleg
Yahoo Research, Israel
pellegd@acm.org

Ido Guy
Yahoo Research, Israel

Ben-Gurion University of the
Negev

idoguy@acm.org
Dafna Shahaf

The Hebrew University of
Jerusalem

dshahaf@cs.huji.ac.il

ABSTRACT
A significant portion of web search queries directly refers to
named entities. Search engines explore various ways to im-
prove the user experience for such queries. We suggest aug-
menting search results with trivia facts about the searched
entity. Trivia is widely played throughout the world, and
was shown to increase users’ engagement and retention.

Most random facts are not suitable for the trivia sec-
tion. There is skill (and art) to curating good trivia. In
this paper, we formalize a notion of trivia-worthiness and
propose an algorithm that automatically mines trivia facts
from Wikipedia. We take advantage of Wikipedia’s category
structure, and rank an entity’s categories by their trivia-
quality. Our algorithm is capable of finding interesting facts,
such as Obama’s Grammy or Elvis’ stint as a tank gunner.
In user studies, our algorithm captures the intuitive notion of
“good trivia” 45% higher than prior work. Search-page tests
show a 22% decrease in bounce rates and a 12% increase in
dwell time, proving our facts hold users’ attention.

1. INTRODUCTION

Libraries may be full of facts, but finding beautiful
trivia in those dry, dusty stacks is like panning for gold.
The glittering grains are few and far between. As the
introduction to one early trivia book says, there is a
difference between “the flower of trivia and the weed of
minutiae.” Or, to put it another way, all trivia may be
facts, but not all facts are capital-T Trivia. I can’t spell
out the difference, but I know it’s there. “Comedian
Albert Brooks attended Carnegie Tech in Pittsburgh”
is a fact. So is “Comedian Albert Brooks is five-foot-
ten-inches tall” – not that interesting unless you’re his
tailor. But “Comedian Albert Brooks had to change
his name because he was born Albert Einstein”? Ah.
That’s trivia.

Ken Jennings [1]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM 2017, February 06-10, 2017, Cambridge, United Kingdom
c© 2017 ACM. ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018709

Today, anybody with a smartphone has access to far more
information than even “Jeopardy!” champion Ken Jennings
could ever recall. Despite this, trivia games are more pop-
ular than ever. From board games to mobile apps, newspa-
pers and pubs, trivia is widely played throughout the world.

In this paper, we tackle the problem of automatically
extracting trivia facts from Wikipedia. This task, while
seemingly lighthearted, has real-world applications. In par-
ticular, we are motivated by its application to search.

In many cases, search is a goal-driven activity: first, there
is some information need, specific or general (e.g., the cur-
rent time in Alofi, or alternatively, a cure for Zika). We then
approach a seemingly-omniscient mechanism, in the form of
a search engine, to answer the need. We wait, get the an-
swer, and then go on — presumably towards some other well-
defined information need. This is the prevailing view in the
information-retrieval community, which places the search-
engine and the user at opposing roles: one is the producer
of search topics, while the other is the consumer, and acts
merely as a passive librarian, looking up the facts. However,
many users do not share this utilitarian view [2]. For them
(or for some of their queries), search is an exploratory activ-
ity, and at some stages of the information-gathering process,
less-than-relevant results are welcome [3].

With this in mind, we note that a significant portion —
over 50% — of web search queries directly refers to named
entities [4, 5]. Modern web search engines explore vari-
ous technologies to improve user experience for these types
of queries. Such technologies include clustering of search
results for disambiguation, related entity recommendation,
and the presentation of rich“entity cards”, which include key
aspects of the entity, directly on the search engine results
page (SERP) [6]. Recently, Miliaraki et al. [7] demonstrated
a search system which, in addition to the search results, sur-
faced entities related — but not necessarily directly — to the
query. Importantly, surfacing other entities was proven to be
an effective vehicle for drawing searchers to an exploratory
activity, thereby increasing engagement.

We propose augmenting search results with trivia facts
that are related to the searched entity. We believe trivia
facts could contribute to the user experience around entity
searches; even a small impact on this type of queries can
translate into a significantly improved user experience.

There are multiple reasons to believe that trivia can in-
deed contribute to the user experience. Business case stud-
ies [8] have shown that trivia helps increase user engagement

345

http://dx.doi.org/10.1145/3018661.3018709

and revenue. A man who tweets random facts has over 18
million followers, and makes about $500,000 a year from
sponsored links [9].

However, there is skill (and art) to coming up with good
trivia. In a recent experiment, professional trivia curators
managed to find trivia facts for merely ten entities per day,
on average [10]. The process is expensive and hard to scale.

In order to automate the process of finding good trivia,
one needs to characterize the notion of what is trivia-worthy.
In this work, we introduce and formalize two criteria that
characterize good trivia: surprise and cohesiveness. Using
our formulation, we propose an algorithm that automatically
extracts trivia facts from Wikipedia articles. We take advan-
tage of the category structure of Wikipedia, and rank an en-
tity’s categories by their trivia-quality. Our algorithm is ca-
pable of finding interesting facts, such as Obama’s Grammy
Award win, or Elvis’ stint as a tank gunner.

User studies with crowd-sourced workers show that our
algorithm produces facts that capture the intuitive notion
of “good trivia”. In another study, we bought ads on search
pages and measured the level of interest in trivia in a real
life scenario. Trivia facts were generally found to arouse
interest, while better trivia facts attract page views with
lower bounce rates and longer dwell time.

2. PROBLEM FORMULATION
Our goal is to automatically find trivia facts about enti-

ties. We first consider possible sources of such facts. Wikipedia
is a natural choice for this purpose because of its wide cov-
erage. However, Wikipedia articles are written in natural
language; working with short textual units (e.g., sentences),
one must deal with anaphora resolution, long-range refer-
ences, and other context-related problems. Thus, we focus
on Wikipedia’s category structure. Categories are sets of ar-
ticles with a shared topic, such as “History of France”, “Phi-
losophy of mind”, or “Biological concepts”. An article can
belong to multiple categories. For example, Barack Obama’s
categories include“Presidents of the United States”,“Columbia
University alumni”, and “Grammy Award winners” (see Fig-
ure 1). Importantly for us, categories are cleaner than sen-
tences, while often capturing the most interesting aspects of
the article [11, 12].

Given an article, we want our algorithm to rank its cate-
gories, such that the top-ranked categories should be most
suitable for the trivia section. Therefore, we need to for-
malize the notion of trivia-worthy. The Merriam-Webster
dictionary defines trivia as “Unimportant facts or details.
Facts about people, events, etc., that are not well-known.”

One possible direction for detecting a trivia-worthy cat-
egory would be to choose the category with the smallest
number of articles. Presumably, a small category indicates
a rare and unique property of an entity, and would be an
interesting trivia fact. However, testing this path has shown
it focuses on properties that were too narrow, in several
senses: Most often, the smallest category focuses on a very
specific identity aspect, usually obscure and uninteresting
- “Muhammad Ali is an alumni of Central High School in
Louisville, Kentucky” is not a good trivia fact - the specific
high school has no importance to the reader and does not
reflect on Ali’s character. In other cases, when the entity
belonged to a well-known family, band or group, the small-
est category captured a well-known aspect of the entity, for

Figure 1: Categories from Obama’s Wikipedia page

example“Michael Jackson was a member of the The Jackson
5”.

Indeed, trivia facts are often centered around uncommon
knowledge. In other words, trivia facts are surprising. For
example, everybody who knows Obama probably knows he
belongs to the “Presidents of the United States” category,
but many people would be surprised to learn that he won a
Grammy. On the other hand, we want facts that are also
interesting and not obscure.

We begin by formulating our first property - surprise.

2.1 Surprise
Surprise measures how unusual it is for a given article

to belong to a category. In other words, we would need to
define a similarity metric between an article a and a category
C. Since a category is a collection of articles, our main
building block will be a similarity metric between articles.
We denote article-article similarity by σ(a, a′), and defer its
exact implementation details to Section 3.

Next, we extend the similarity between articles to similar-
ity between articles and categories. A category C is a set of
articles. We define the similarity of an article a to category
C as the average similarity between a and the articles of C:

σ(a,C) =
1

|C| − 1

∑
a6=a′∈C

σ(a, a′)

An article is surprising w.r.t. a category if its average sim-
ilarity to the other articles is low. Thus, we define surprise
as the inverse of the average similarity:

surp(a,C) =
1

σ(a,C)

For example, consider 1940s Hollywood film actress Hedy
Lamarr. When ranking her Wikipedia page categories by
surprise, the top 5 results (out of 18) are, in order (top is
most surprising):

“20th-century Austrian people”
“Women in technology”

“Radio pioneers”
“American anti-fascists”

“American people of Hungarian-Jewish descent”

346

2.2 Cohesiveness
Looking at Hedy Lamarr’s most surprising categories, some

of them do not fit our intuitive idea of trivia. For example,
regarding her Austro-Hungarian descent: Wikipedia chose
to list it because of its charter to record the minutiae of
famous people’s biographies, but the detail itself is not par-
ticularly trivia-worthy.

However, other aspects of her life are less mundane. For
example, this Hollywood star had also invented radio en-
cryption (more precisely, she had patents in frequency-hopping,
spread-spectrum technology1). Yet, our notion of surprise
ranks the fact similarly to how it ranks her (less exciting)
Austrian pedigree.

Note that all five categories are, indeed, surprising; many
people who know Hedy Lamarr as a movie actress are prob-
ably not aware of these aspects of her life. Therefore, we
conclude that surprise is not enough.

However, the thing that makes the group“Radio pioneers”
more suitable for our purposes is somewhat harder to define.
Intuitively, being of Hungarian-Jewish descent seems more
arbitrary than being a radio pioneer; being Austrian says
less about the person than being a woman in technology.
We believe that elusive notion is related to the cohesiveness
of the group: People born in Austria can come from all walks
of life. Look at the Wikipedia category “20th-century Aus-
trian people”, and you will find lawyers, architects, painters,
physicians, and World War I diplomats. On the other hand,
radio pioneers seem like a more close-knit group.

Thus, we define our second metric, cohesiveness. We de-
fine cohesiveness of category C as the average similarity be-
tween pairs of articles from C:

cohesive(C) =
1(|C|
2

) ∑
a6=a′

σ(a, a′)

When ranking Hedy Lamarr’s categories by cohesiveness,
the top-5 categories are, in order:

“Metro-Goldwyn-Mayer contract players”
“Actresses from Vienna”
“Austrian film actresses”

“20th-century Austrian actresses”
“American film actresses”

These categories are indeed cohesive, in the sense that
they are not arbitrary details. However, to be fair, this list
is not yet a good set of trivia facts. For that, we have to
consider both surprise and cohesiveness, which we do below.

2.3 Tying it Together
We have just defined two properties – surprise and cohe-

siveness. We now wish to combine them into a notion of
trivia-worthiness.

Figure 2 shows the categories of Hedy Lamarr. The x-axis
represents cohesiveness, and the y-axis represents surprise.
Intuitively, a category is trivia-worthy if it is high on both
surprise and cohesiveness scores. Therefore, we would like
to define a score that is monotonic in both dimensions.

We define the trivia-worthiness of a category C w.r.t. ar-
ticle a as the product of cohesiveness and surprise.

trivia(a,C) = cohesive(C) · surp(a,C)

1As well as inventions in traffic lights and soft drinks. Did
you know that?

2.2

2.6

3

3.4

3.8

4.2

0.25 0.3 0.35 0.4 0.45

Su
rp
ri
se

Cohesiveness

Hedy Lamarr's Categories

Figure 2: Cohesiveness plotted against surprise for the

categories of Hedy Lamarr. To reduce label clutter, we

omit some of the labels.

There are many other ways to combine the two scores.
However, multiplication has a natural interpretation. Note
that surprise is defined as the inverse of the average simi-
larity of a to the category. Thus, the multiplicative formula
measures how similar the article is to the category, compared
to the average similarity of articles from the same category.
In other words, we measure whether the article is more sim-
ilar or less similar to the category than was expected.

trivia(a,C) =
cohesive(C)

σ(a,C)

A value of trivia around one means, by definition, that
the average distance between a and C is similar to the cohe-
siveness of C, which indicates that the article is typical for
that category: it is similar to other articles in the category
just as much as the average article.

A value of trivia much lower than one indicates that the
article is more similar to other articles than the average,
and could be an exemplar. It is a prominent member of the
category, and would not be good trivia.

Now, a value of trivia higher than one means that the
article in question is not so similar to the category. In some
sense, it is an outsider, which might make good trivia.

Example. Figure 3 illustrates our ideas. The figure shows
similarity among articles from the “Democratic Party Presi-
dents of the United States” category (left), compared to ar-
ticles from “Grammy Award winners” (right). Each node is
an article, and the edge weight represents similarity. Obama
is in the center of both graphs.

First, we look at the edges from Obama to other arti-
cles. Being a Grammy winner is much more surprising, as
demonstrated by the thinner edges between Obama’s node
and the rest of the graph — a similarity score of only 0.241,
compared to 0.601 for the democratic presidents.

Next, we move on to cohesiveness. The cohesiveness of
the two different categories can be seen in Figure 3 as the
average thickness of the edges. The Grammy winners have
a cohesiveness score of 0.398, as they are mostly well known

347

Figure 3: Similarity graphs for two categories containing Barack Obama. Thicker edges are more similar.
For visualization reasons, not all nodes and edges are shown.

musicians, although from different genres. Presidents, on
the other hand, are all leading US politicians, and are a
well-knit group, earning them a score of 0.619.

Finally, we look at Obama’s edges, compared to the rest
of the edges in the category. We can see that in the demo-
cratic presidents graph, Obama has high similarity to the
other nodes, but so is the average similarity in the graph.

The trivia value is cohesive(C)
σ(a,C)

= 0.619
0.601

= 1.030, which indi-

cates that Obama is a typical article in the category. In the
Grammy category, however, the similarity between Obama
and the other nodes is much weaker than the average similar-
ity in the category. The trivia value is 0.398

0.241
= 1.651, which

indicates that Obama is not a typical Grammy winner.

3. ALGORITHM
For a formal description of our method, see Algorithm 1.

K is a parameter, described below. In each category, we
compute cohesiveness and surprise with regard to the input
article, and combine them into a trivia score.

An important component in our formulation was an article-
article similarity metric, σ(a, a′) (computed by the function
ArticleSimilarity). We now discuss its implementation
details.

3.1 Article Similarity
When choosing a metric for article comparison, standard

methods such as cosine similarity between term frequency
vectors proved to be inadequate. For example, when com-
paring the articles “Apple” and “Orange”, cosine similarity
was only 0.026, even though both are fruit. “Apple” and
“Barack Obama” had a higher similarity, 0.059. There are
two main problems underlying the usual similarity methods:
• We are looking for relatively broad similarity (for

example, “both people sing in rock bands”); we do not
necessarily need details to be similar. Long articles, in
particular, can add a significant amount of noise.
• Term frequency vectors look for exact matches between

terms, so many semantic similarities are lost (even
after stemming and normalization).

Algorithm 1 Top Trivia algorithm

function TopTrivia(inputArticle)
for every category C of inputArticle do

surprise← Surprise(inputArticle, C)
cohesiveness← Cohesiveness(C)
C.trivia← cohesiveness ∗ surprise

return category C with maximum trivia score

function Surprise(inputArticle, category)
sum, count← 0
for every article a 6= inputArticle in category C do

similarity ← ArticleSimilarity(inputArticle, a)
sum← sum+ similarity
count← count+ 1

similarityToCategory ← sum/count
surprise← 1/similarityToCategory
return surprise

function Cohesiveness(category)
sum, count← 0
for every pair of articles a1 6= a2 in category C do

similarity ← ArticleSimilarity(a1, a2)
sum← sum+ similarity
count← count+ 1

cohesiveness← sum/count
return cohesiveness

function ArticleSimilarity(article1, article2)
K ← 10
T1← TopTFIDF(article1,K)
T2← TopTFIDF(article2,K)
similarity ← σ(article1, article2) using equation 3.1
return similarity

To address the first problem (broad similarity), we do
not use all words in an article. Instead, we compute TF-IDF
scores for all words in the documents. TF-IDF measures how
important a word is in a document, given a corpus. For our

348

Table 1: Top TF-IDF Terms

Sherlock Holmes Dr. Watson Hercule Poirot

holmes watson murder
sherlock holmes christie
watson sherlock hastings
adventures adventures detective
detective doyle novels
conan portrayed curtain
doyle conan belgian
stories stories solve
scarlet detective mystery
bohemia doctor adaptation

corpus, we used a sample of 10, 000 articles from the English
Wikipedia. We used standard text normalization techniques
such as stemming, stopword removal and case folding. We
removed terms appearing in less than 10 documents.

We restrict ourselves to the top K TF-IDF terms of each
article. In our experiments we used K = 10, after testing
showed it balanced between noise reduction and retaining
important information. For example, table 1 displays the
top 10 TF-IDF terms for the articles “Sherlock Holmes” and
“Dr. Watson”, the main characters in the detective stories
of Arthur Conan Doyle, and the article “Hercule Poirot”,
another fictional detective from stories by Agatha Christie.

While these words seem to capture the gist of the three
characters, there are almost no exact matches. Holmes and
Poirot, for example, share exactly one word – detective.
There are, however, many semantically related words, such
as murder/detective, novels/adventures.

To address the problem of semantic similarity, we com-
pute word similarity σ(w1, w2) using the word2vec repre-
sentation [13]. We used a pre-trained model, trained on
a Google News corpus of about 100 billion tokens using a
neural network to produce a 300-dimensional vector space
of word embeddings. Word similarity is in the range [-1,1],
where higher values indicate stronger similarity. Interest-
ingly, word2vec is known to capture semantic similarities
[14, 15]. For example:

σ(“christie”, “doyle”) = 0.529

σ(“novels”, “adventures”) = 0.423

σ(“curtain”, “scarlet”) = 0.163

To compute similarity between articles, we look at the
similarities of their top words. Let T1 and T2 be the sets
of top-K TF-IDF terms for two articles, a1 and a2. For
each TF-IDF term in T1, we find the most similar term in
T2 (and vice versa, to keep the definition symmetric) and
sum up these similarities. We use a weighted formula to
give more weight to terms with higher TF-IDF scores and
normalize the result to the range [-1,1]:

σ(a1, a2) = (3.1)

1

Z

K∑
i=1

w(i)·(max
1≤j≤K

σ(T1[i], T2[j]) + max
1≤j≤K

σ(T2[i], T1[j]))

We experimented with several weighting schemes, and
chose a linear one: w(i) = K − i + 1, with normalization
factor Z = 2 ·

(
K+1

2

)
.

When comparing articles using this method, the articles
“Apple”and“Orange”had a similarity score of 0.3, compared

to only 0.11 for “Apple” and “Barack Obama”. “Sherlock
Holmes”and“Hercule Poirot”had a similarity score of 0.513.

3.2 Practical Considerations
To improve efficiency and allow reuse of intermediate re-

sults, we used caching throughout our algorithm, writing
values to both memory and file system. To increase speed,
we parallelized the algorithm so it could (1) process several
articles simultaneously, and (2) rate the trivia-worthiness of
several categories simultaneously for each article.

When computing surprise and cohesiveness for large cate-
gories, one needs to compute similarity between O(n2) pairs
of articles. To speed the computation up, we randomly sam-
ple a subset of the articles instead, and computed similarity
between all pairs in the subset. In our experiments, we found
that 50 articles are usually enough to obtain results that are
very close to the results of using the full set of articles.

4. EVALUATION
In this section, we evaluate our algorithm empirically. We

have compared the following algorithms:
• Wikipedia Trivia Miner (WTM) [10]: A ranking

algorithm over Wikipedia sentences, which learns the
notion of interestingness using domain-independent lin-
guistic and entity based features. The supervised rank-
ing model is trained on existing user-generated trivia
data available on the Web.
• Top Trivia: The highest ranking category in our al-

gorithm ranking.
• Middle-ranked Trivia: Using middle-of-the-pack ranked

categories, as ranked by our algorithm.
• Bottom Trivia: Using the lowest-ranked categories

by our algorithm.
We collected article and category data for our experiments

via the Wikipedia web API using the Pywikibot framework [16]
and an adapted version of the Wiki2Plain interface [17].

We created a dataset of 400 popular Wikipedia articles
about people, based on a list of the most viewed pages over
the week of July 10-16, 2016 [18]. The list contains a di-
verse range of popular people, including politicians, sports-
people, scientists, actors, writers, singers, historical figures
and other people of interest.

However, the popularity of a page does not necessarily
indicate that it contains good trivia. To ensure a fair com-
parison, we restricted ourselves to pages where both our al-
gorithm and WTM found good trivia. In particular, we se-
lected articles for which the trivia fact had a score in the top
50% of facts in both our algorithm and the WTM rankings.
This resulted in a dataset of trivia facts for 109 articles.

For every article, we produced the single trivia fact for
each of the algorithms. The textual format for our facts is
“a is in the group C”. Table 2 shows an example of the trivia
facts produced for the article “Barack Obama”. Our data
and code are available at https://github.com/DMTsurel/
FunFacts

4.1 Trivia Evaluation Study
Evaluation of trivia facts is a subjective matter. There-

fore, a key part of our evaluation is based on a user study
we performed using crowd-sourced work.

For each of the 109 articles, we computed four trivia facts:
our top, middle and bottom facts, as well as WTM. Each
fact was presented to five crowd workers, for a total of 2180

349

https://github.com/DMTsurel/FunFacts
https://github.com/DMTsurel/FunFacts

Table 2: Top fact returned by each algorithm for the

article “Barack Obama”

Algorithm Fact

Top Barack Obama is in the group of Grammy
Award winners

Middle Barack Obama is in the group of African-
American lawyers

Bottom Barack Obama is in the group of Obama
family

WTM Besides his native English, Obama speaks
some basic Indonesian, having learned the
language during his four childhood years
in Jakarta.

evaluations. To increase reliability, we restricted workers’
location to the US, and their approval rate to above 80%.
We made our task available to Mechanical Turk Masters
only (a qualification given by Mechanical Turk to workers
who perform consistently well across a wide range of tasks).

The workers were presented with the fact and asked to ex-
press their level of agreement with the following statements:
• Trivia-worthiness: “This is a good trivia fact”.
• Surprise: “This fact is surprising”.
• Personal knowledge: “I knew this fact before reading it

here”.
Workers could agree or disagree with each statement, or

reply that they could not understand the fact. For each
statement, the majority opinion of a fact is the answer
agreed on by at least 50% of workers. Five evaluations had
missing answers for the trivia-worthiness statement. In two
of these, no majority was reached because of the missing
answer, so they were removed from the results.

Results. Figure 4 shows the percentage of facts that a ma-
jority of users ranked as trivia-worthy, by algorithm. As ex-
pected, the facts ranked “top” by our algorithm outperform
the “middle”, which outperform “bottom”. Our algorithm
proved to be significantly better at finding trivia-worthy
facts than the WTM baseline: 56%, compared to only 38.5%
for WTM (p < 0.01, Pearson’s chi-squared test).

When looking at the type of majority (3, 4 or 5 users), we
notice that 32.8% of the facts ranked as trivia-worthy by our
algorithm achieved a perfect agreement (5 users), compared
to only 11.9% for WTM.

Facts that could not be understood are the worst type of

Figure 4: Majority opinion about facts being trivia-

worthy, by algorithm

facts – not only are users presented with facts that are not
good trivia, but they leave the users confused. Our algo-
rithm had no such facts, compared to 23.9% for the WTM
baseline and 8.3% for our bottom baseline. This is an advan-
tage of using categories for facts, as they are self-contained
pieces of information. The WTM baseline used sentences
from the Wikipedia text, which are sometimes left out of
context even after trying to remove such sentences using
co-reference resolution [10]. For example, the WTM base-
line fact for Leonardo DiCaprio was “The project achieved
a worldwide box office take of $147 million.” Users did not
know what project was referenced in this sentence, so they
could not understand the fact. Our bottom baseline also had
several confusing facts. For example, the “William Shake-
speare” category was ranked worst for the article William
Shakespeare, and users were confused by the fact “William
Shakespeare is in the group of William Shakespeare”.

We examined instances where our algorithm failed while
WTM managed to find an interesting fact. Our algorithm
examines only facts formulated as categories, so it will miss
anecdotes that do not pertain to a set of articles. For exam-
ple, most workers did not think the fact “Beyonce is in the
group of Shoe designers”, found by our algorithm, was trivia
worthy. The trivia fact suggested by WTM was ranked as
good trivia: “On January 7, 2012, Beyonce gave birth to
her first child, a daughter, Blue Ivy Carter, at Lenox Hill
Hospital in New York”. The latter fact is too specific to be
captured by a category.

Results for surprise were similar (Figure 5). Facts ranked
as the top category were more surprising to users than those
in the middle and bottom. 50.5% of our algorithm’s top
results were surprising to users, 47.7% were not surprising,
and there were 0% where users could not understand the
fact. The WTM algorithm had 39.5% of its facts ranked as
surprising, 32.1% as not surprising, and 23.8% could not be
understood (p < 0.01, Pearson’s chi-squared test).

Figure 5: Majority opinion about facts being surprising,

by algorithm

Figure 6 shows the percentage of facts that a majority of
users knew previously. Almost all facts in both our algo-
rithm’s top choice and WTM were previously unknown to
users. However, when choosing the middle or bottom cate-
gories, the likelihood of being familiar with the facts is much
higher. This indicates that our ranking method works well
in terms of filtering out well-known facts.

To test our hypothesis that good trivia is based on the ele-
ment of surprise, we consider the contingency table of trivia-
worthiness and surprise (Table 3). We see that there is in-

350

Figure 6: Majority opinion about personal knowledge

of facts, by algorithm

Figure 7: An example ad used in the engagement study.

deed strong correlation between surprise and trivia-worthiness
(One-Tailed Fisher Exact Probability Test, p < 10−50).

Table 3: Trivia-worthiness and surprise
Surprising Not Surprising

Trivia-worthy 102 22
Not Trivia-worthy 12 250

4.2 Engagement Study
In addition to the direct approach used in the first study,

we conducted an additional study to indirectly measure how
engaging trivia facts are.

In this study, we were targeting users who searched the
entities in our dataset on the Web. We used Google Ad-
Words [19] to buy ads pertaining to these entities (see Fig-
ure 7). When users clicked an ad, they were directed to one
of three variations of a landing page. The variations corre-
sponded to the Top Trivia, Bottom Trivia and WTM
algorithms. Note that the ad itself was the same for all three
conditions. Furthermore, we turned off Google’s optimiza-
tion algorithms, to ensure that the users would be uniformly
distributed between the conditions.

Each page began with the trivia fact extracted by the
corresponding algorithm, and then provided a mirror of the
original Wikipedia article, with the fact highlighted (Figure
8). Users were directed to paragraphs in the article text
that contained broader context. For category-based facts,
these paragraphs were chosen as those with the highest σ
value, compared to the category title. “Click here for an-
other random fact” allowed users to navigate to other trivia
pages generated by the same algorithm. We conjectured
that better trivia facts will engage the users more.

Results. We collected nearly 500 clicks throughout the ex-
periment. Key measures for ad success are click-through
rate and bounce rate [20]. We also measured average dwell
time of users on the site.

CTR is the percentage of users clicking on an ad. We use

· · ·

Figure 8: A partial screenshot of a landing page. It is

a mirror of the Wikipedia page, with the trivia fact at

the beginning (top) and the corresponding parts of the

article highlighted (bottom).

CTR to gauge users’ level of interest in trivia in a real-life
search scenario. In our study, CTR was inconsistent over
different days, but overall averaged to 0.8%. Baseline CTR
values in search ads is considered commercially sensitive in-
formation, so it is difficult to find non-normalized reference
points. According to a recent analysis [21], this value does
indicate willingness of users to explore trivia facts.

Next, we compared our three groups of users. For the
Bottom Trivia condition, 52% of users bounced immediately
out of the site (under 5 seconds). WTM had 47%, and Top
Trivia 37%. Some of the bounce rate might be explained
by misguided clicks. For example, an Ellen DeGeneres ad
was shown to people whose search included “Ellen”, and was
clicked on by people who searched for other Ellens.

Average time on the site for the users who did not bounce
was 30.7 seconds for Bottom Trivia, 43.1 seconds for WTM
and 48.5 seconds for Top Trivia. We used the one-sided
Mann-Whitney U test to test whether that difference was
significant. Our hypothesis was that Top Trivia users stayed
longer on the site. Top Trivia was indeed better than Bot-
tom Trivia (p ≈ 0.02). However, the difference from WTM
was not statistically significant (p ≈ 0.15).

We note that dwell time is a coarse measure for trivia qual-
ity, and there are other reasons that could explain a longer
dwell time. For example, WTM facts were often long sen-
tences (“Mandel has mysophobia (a pathological fear of con-
tamination/germs) to the point that he does not shake hands
with anyone, including enthusiastic contestants on Deal or
No Deal, unless he is wearing latex gloves”). Other times,
the WTM facts were somewhat cryptic (Andy Kaufman’s
fact was “Keep that in mind when you call”), as can also
be seen by the number of people who could not understand
them in the Mechanical Turk experiment (Figure 4). Both
those reasons might prompt people to spend more time on
the page – either processing longer sentences, or scrolling
down to understand the context of obscure sentences.

351

5. DISCUSSION AND FUTURE WORK
In the following section, we discuss our algorithm’s limi-

tations and potential extensions.

Limitations. We note that the proposed algorithm works
well for human entities. However, there are domains where
categories do not include many interesting trivia facts, such
as movies or cities. (For example, consider the London cat-
egories: London, British capitals, Capitals in Europe, Pop-
ulated places established in the 1st century, Port cities and
towns in England, Staple ports)

In these domains, our algorithm’s ability to find good
trivia facts is limited. Note that even in such domains, false
positives can generally be avoided by a trivia score thresh-
old, as the categories in these cases are homogeneous and
have trivia values close to 1.

We note that our algorithm currently generates only a
single-template mold (“X is a member of group Y ”) that
does not appeal to users. A possible direction towards break-
ing the template would be to return from categories to nat-
ural language sentences: given the title of a category C we
attempt to find in the article text a sentence S that con-
tains similar information, using a variant of the σ function.
Testing this function on the “Grammy Award winners” cat-
egory for Barack Obama gave the following sentence as the
top result: “Obama won Best Spoken Word Album Grammy
Awards for abridged audiobook versions of Dreams from My
Father in February 2006 and for The Audacity of Hope in
February 2008.”

A related problem is that of turning trivia facts into trivia
questions. For example, “Barack Obama won a Grammy
award” is a good trivia fact, but turning it into a question
is not straightforward. “Who won a Grammy award?” or
“What did Barack Obama win?” are not good trivia ques-
tions, as they both have too many valid answers. One way to
generate good questions would be to contrast a well-known
category with the trivia-worthy category: “Which US presi-
dent is a Grammy award winner?”

Other Applications. Our goal in this paper was to find the
best trivia fact for a given article. However, our algorithm
can be useful for other tasks as well. For example, the top
category for Abraham Lincoln was “American Vegetarians”.
This is indeed surprising, but turns out to be historically
false [22]. Detection of anomalous information could be use-
ful in removing inaccurate claims from Wikipedia, thereby
increasing its reliability.

In addition, the proposed surprise metric can also be used
to detect the most surprising article for a given category –
or the least surprising one. For example, our algorithm de-
tected that the least surprising article in the “British tele-
vision chefs” category was Gordon Ramsay, who is indeed
very prominent in that category.

We largely framed the trivia insertion problem as one that
piggybacks on top of search. However, search today is just
another function the smartphone performs. The boundaries
between entertainment and information are blurred (as evi-
denced by the increase of music video queries in voice search
[23]). Combined with location data to help identify if the
user is ready for listless exploration, the technology pre-
sented here could help build proactive educational agents.

Extensions. There are multiple dimensions we can add to
our formulation, most important of which is probably per-
sonalization. Bob Marley’s Syrian-Jewish descent might be

more interesting to people who are Syrian, Jewish (or both).
A growing body of work looks into personalization in rec-
ommender systems. Mejova et al. [24] suggest personalized
trivia facts as a method of breaking the“Filter Bubble”of so-
cial networks and increasing user interest in geographically
remote countries. Young people and older people might en-
joy different facts: in [7], there is a strong match between
the age of the suggested person entity and the age of the
searcher. The diversity of countries and cultures can create
unique perspectives on what is obvious and what is surpris-
ing [25].

In the absence of data about personal preferences, we can
use popularity as an aggregated signal. The number of page
views can indicate general level of interest in a category.
Temporal popularity patterns can be used to bias our al-
gorithm (e.g., showing somebody’s Irish descent just before
Saint Patrick’s Day).

6. RELATED WORK
There is relatively little work in Computer Science focus-

ing on trivia. In the work closest to ours, Prakash et al. [10]
introduced the WTM algorithm. This work used supervised
learning to extract linguistic and entity-based features from
a labeled dataset derived from the IMDb (Internet Movie
Database) trivia section. Unlike our method, WTM algo-
rithm does not utilize Wikipedia’s structure. In addition,
its application is limited to domains where large free labeled
databases such as IMDb exist. WTM is used as a baseline in
Section 4. Despite being simpler, our algorithm finds better
trivia facts.

Merzbacher [26] tackled a related problem of mining trivia
questions from a database. The questions are constructed
by composing together functions (for example, the standard
relational algebra operators). Serban et al. [27] applied a
neural network architecture on the Freebase knowledge base
to transduce template-based relations into natural-language
questions. In contrast to our approach, these methods as-
sume a relational database structure, and thus have limited
applicability.

There is a large body of work devoted to the more general
questions of surprise, interestingness and anomaly detection
[28]. For example, Byrne and Hunter [29] develop a logic-
based framework that translates structured news reports
into formulas, identifying as interesting those that violate
consistency or contradict axiomatic beliefs and expectations.
Gamon et al. [25] consider the concept of interestingness as a
user’s desire to know more about a topic. By observing web-
browsing logs of transitions between Wikipedia articles they
construct a probabilistic model that learns latent semantic
features that are interesting to users. McGarry [30] con-
ducts a literature survey of interestingness measures used in
knowledge discovery, divided into objective statistical mea-
sures and subjective measures based on user beliefs or a spe-
cific domain. Malone et al. [31] define differential ratio rules
to detect interesting patterns in spatio-temporal data. The
technique uses ratios of features over time to detect change,
similar to our definition of trivia-worthiness.

In recent years, the importance of serendipity as a mea-
sure for the success of recommender systems has grown, as
one of the most prominent “beyond-accuracy” measures [32,
33]. McNee et al. [32] define it as the experience of get-
ting an unexpected and fortuitous item. Desrosiers and
Karypis [34] tie it with helping users find something inter-

352

esting they might not have otherwise discovered. Herlocker
et al. [35] define serendipity as the extent to which the items
are both attractive and surprising to users. Sun et al. [36]
define serendipity in social networks context as messages un-
expected from the sender and relevant to the receiver. Pro-
ducing serendipitous recommendations is performed by vari-
ous means, such as promoting items that have both a strong
positive and a strong negative prediction scores [37] or items
that are well connected, in a graph representation, both to
the user’s preferred items and to unrelated items [38]. Eval-
uating serendipity is also a challenge. A recent study of
social-stream item recommendation [39] directly asked par-
ticipants if they found the recommended items surprising in
order to asses serendipity. We ask a similar question about
trivia facts in the user study conduced as part of our own
evaluation.

Serendipity was also explored in the context of search.
Recently, Miliarki et al. [7] demonstrated a search module
which explores entities related to a search query. It was
proven to be an effective vehicle for drawing searchers to an
exploratory activity. Interestingly, the highest engagement
was registered when the mentioned entity was a person (as
compared to location, or a movie). This serves as further
motivation for our suggestion of augmenting entity search
results with related trivia facts. An issue left open is how to
predict the response in advance – that is, whether the user
is “focused” or “exploratory”.

7. CONCLUSIONS
The prevailing view in the information-retrieval commu-

nity sees the search engine as a passive librarian, looking up
the facts. However, many users today expect the search en-
gine to provide not just information, but also entertainment.
We believe that with the advent of new search interfaces, it is
time to re-examine the idea of adding serendipity to search.

Building on the popularity of entities (and in particular
person entities) in current search, we propose an algorithm
to identify facts about people as trivia-worthy. Specifically,
we examine group membership in Wikipedia categories and
rank them according to two dimensions: surprise and cohe-
siveness. Surprise relates to our prior on the person belong-
ing to a given group, while cohesiveness ensures that said
group is indeed interesting to begin with. We present a sim-
ple algorithm that is capable of discovering interesting facts,
such as Hedy Lamarr’s inventions.

We performed two kinds of user studies. First, directly
and with crowd-sourced work, we show that our facts are
judged as good trivia, surprising and previously unknown.
Compared to prior work, our facts are judged as 27% more
surprising, and 45% better trivia facts. Second, by buying
ads on search pages, we show that our trivia facts attract
page views with longer dwell times (12%) and lower bounce
rates (22%), as compared to the baseline.

This application, while seemingly lighthearted, can lead
to higher engagement of users searching for named entities.
If successful, even a small impact on this type of queries can
translate into a substantial improvement in user experience,
and possibly transfer to other domains of human activity,
like education.

8. REFERENCES

[1] Ken Jennings. Brainiac: adventures in the curious,
competitive, compulsive world of trivia buffs. Villard
Books, 2007.

[2] Paul André, Jaime Teevan, and Susan T. Dumais.
From x-rays to Silly Putty via Uranus: Serendipity
and its role in web search. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 2033–2036, New York, NY,
USA, 2009. ACM.

[3] Amanda Spink, Howard Greisdorf, and Judy
Bateman. From highly relevant to not relevant:
examining different regions of relevance. Information
Processing & Management, 34(5):599–621, 1998.

[4] Peter Mika. Entity search on the web. In Proc. WWW
Companion, pages 1231–1232, 2013.

[5] Xiaoxin Yin and Sarthak Shah. Building taxonomy of
web search intents for name entity queries. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 1001–1010, New
York, NY, USA, 2010. ACM.

[6] Horatiu Bota, Ke Zhou, and Joemon M. Jose. Playing
your cards right: The effect of entity cards on search
behaviour and workload. In Proc. CHIIR, pages
131–140, 2016.

[7] Iris Miliaraki, Roi Blanco, and Mounia Lalmas. From
“Selena Gomez” to “Marlon Brando”: Understanding
explorative entity search. In 24th International World
Wide Web Conference (WWW 2015), Florence, Italy,
May 2015.

[8] Using trivia and quiz products to engage your
customer, http://www.slideshare.net/woverstreet/
using-trivia-and-quiz-products-to-engage-your-customer.
[Online; accessed 17-July-2016].

[9] This 25-year-old makes $500,000 a year tweeting
random facts, http://www.cnbc.com/2016/07/16/
25-year-old-kris-sanchez-makes-500000-a-year-from-uberfacts.
html. [Online; accessed 17-July-2016].

[10] Abhay Prakash, Manoj K. Chinnakotla, Dhaval Patel,
and Puneet Garg. Did you know?: Mining interesting
trivia for entities from wikipedia. In Proceedings of the
24th International Conference on Artificial
Intelligence, IJCAI’15, pages 3164–3170. AAAI Press,
2015.

[11] Sergey Chernov, Tereza Iofciu, Wolfgang Nejdl, and
Xuan Zhou. Extracting semantics relationships
between Wikipedia categories. SemWiki, 206, 2006.

[12] Vivi Nastase and Michael Strube. Decoding Wikipedia
categories for knowledge acquisition. In AAAI,
volume 8, pages 1219–1224, 2008.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

[14] Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of Association for
Computational Linguistics (ACL), volume 1, 2014.

[15] Tom Kenter and Maarten de Rijke. Short text
similarity with word embeddings. In Proceedings of the
24th ACM International on Conference on

353

http://www.slideshare.net/woverstreet/using-trivia-and-quiz-products-to-engage-your-customer
http://www.slideshare.net/woverstreet/using-trivia-and-quiz-products-to-engage-your-customer
http://www.cnbc.com/2016/07/16/25-year-old-kris-sanchez-makes-500000-a-year-from-uberfacts.html
http://www.cnbc.com/2016/07/16/25-year-old-kris-sanchez-makes-500000-a-year-from-uberfacts.html
http://www.cnbc.com/2016/07/16/25-year-old-kris-sanchez-makes-500000-a-year-from-uberfacts.html

Information and Knowledge Management, CIKM ’15,
pages 1411–1420, New York, NY, USA, 2015. ACM.

[16] MediaWiki. Manual:Pywikibot — Mediawiki, The
Free Wiki Engine, https://www.mediawiki.org/w/
index.php?title=Manual:Pywikibot&oldid=2176177,
[Online; accessed 17-July-2016].

[17] joksnet. Wiki2Plain,
http://stackoverflow.com/a/4461624. [Online; accessed
17-July-2016].

[18] Wikipedia. User:West.andrew.g/Popular pages —
Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=User:
West.andrew.g/Popular pages&oldid=730185650.
[Online; accessed 17-July-2016].

[19] Andrew E Goodman. Winning Results with Google
AdWords. McGraw-Hill/Osborne, 2005.

[20] D Sculley, Robert G Malkin, Sugato Basu, and
Roberto J Bayardo. Predicting bounce rates in
sponsored search advertisements. In Proceedings of the
15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages
1325–1334. ACM, 2009.

[21] Display advertising clickthrough rates,
http://www.smartinsights.com/internet-advertising/
internet-advertising-analytics/
display-advertising-clickthrough-rates/. [Online;
accessed 17-July-2016].

[22] Mike Hudak. Abraham Lincoln: vegetarian and
animal rights advocate? - a review of the evidence.
Broome County History Bulletin (Fall 2009, vol. 8,
no. 2), 2009.

[23] Ido Guy. Searching by talking: Analysis of voice
queries on mobile web search. In Proceedings of the
39th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’16, pages 35–44, New York, NY, USA, 2016.
ACM.

[24] Yelena Mejova, Javier Borge-Holthoefer, and Ingmar
Weber. Bridges into the unknown: Personalizing
connections to little-known countries. In Proceedings
of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages
2633–2642, New York, NY, USA, 2015. ACM.

[25] Michael Gamon, Arjun Mukherjee, and Patrick
Pantel. Predicting interesting things in text. In
COLING 2014, 25th International Conference on
Computational Linguistics, Proceedings of the
Conference: Technical Papers, August 23-29, 2014,
Dublin, Ireland, pages 1477–1488, 2014.

[26] Matthew Merzbacher. Automatic generation of trivia
questions. In International Symposium on
Methodologies for Intelligent Systems, pages 123–130.
Springer, 2002.

[27] Iulian Vlad Serban, Alberto Garćıa-Durán, Çaglar
Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C.
Courville, and Yoshua Bengio. Generating factoid
questions with recurrent neural networks: The 30m
factoid question-answer corpus. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,

2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[28] Varun Chandola, Arindam Banerjee, and Vipin
Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

[29] Emma Byrne and Anthony Hunter. Man bites dog:
looking for interesting inconsistencies in structured
news reports. Data & Knowledge Engineering,
48(3):265 – 295, 2004.

[30] Ken McGarry. A survey of interestingness measures
for knowledge discovery. Knowl. Eng. Rev.,
20(1):39–61, March 2005.

[31] James Malone, Kenneth McGarry, and Chris
Bowerman. Performing trend analysis on
spatio-temporal proteomics data using differential
ratio data mining. In Proceedings of the 6th EPSRC
Conference on Postgraduate Research in Electronics,
Photonics, Communications and Software (PREP
2004), pages 103–105, 2004.

[32] Sean M. McNee, John Riedl, and Joseph A. Konstan.
Being accurate is not enough: How accuracy metrics
have hurt recommender systems. In Proc. CHI EA,
pages 1097–1101, 2006.

[33] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar
Jannach. Beyond accuracy: Evaluating recommender
systems by coverage and serendipity. In Proc. RecSys,
pages 257–260, 2010.

[34] Christian Desrosiers and George Karypis. A
comprehensive survey of neighborhood-based
recommendation methods. In Recommender Systems
Handbook, pages 107–144. Springer, 2011.

[35] Jonathan L. Herlocker, Joseph A. Konstan, Loren G.
Terveen, and John T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, January 2004.

[36] Tao Sun, Ming Zhang, and Qiaozhu Mei. Unexpected
relevance: An empirical study of serendipity in
retweets. In Emre Kiciman, Nicole B. Ellison, Bernie
Hogan, Paul Resnick, and Ian Soboroff, editors,
Proceedings of the Seventh International Conference
on Weblogs and Social Media, ICWSM 2013,
Cambridge, Massachusetts, USA, July 8-11, 2013. The
AAAI Press, 2013.

[37] Leo Iaquinta, Marco De Gemmis, Pasquale Lops,
Giovanni Semeraro, Michele Filannino, and Piero
Molino. Introducing serendipity in a content-based
recommender system. In Proc. HIS, pages 168–173.
IEEE, 2008.

[38] Kensuke Onuma, Hanghang Tong, and Christos
Faloutsos. Tangent: A novel, ’surprise me’,
recommendation algorithm. In Proc. KDD, pages
657–666, 2009.

[39] Ido Guy, Roy Levin, Tal Daniel, and Ella Bolshinsky.
Islands in the stream: A study of item
recommendation within an enterprise social stream. In
Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’15, pages 665–674, New
York, NY, USA, 2015. ACM.

354

https://www.mediawiki.org/w/index.php?title=Manual:Pywikibot&oldid=2176177
https://www.mediawiki.org/w/index.php?title=Manual:Pywikibot&oldid=2176177
http://stackoverflow.com/a/4461624
https://en.wikipedia.org/w/index.php?title=User:West.andrew.g/Popular_pages&oldid=730185650
https://en.wikipedia.org/w/index.php?title=User:West.andrew.g/Popular_pages&oldid=730185650
http://www.smartinsights.com/internet-advertising/internet-advertising-analytics/display-advertising-clickthrough-rates/
http://www.smartinsights.com/internet-advertising/internet-advertising-analytics/display-advertising-clickthrough-rates/
http://www.smartinsights.com/internet-advertising/internet-advertising-analytics/display-advertising-clickthrough-rates/

	Introduction
	Problem Formulation
	Surprise
	Cohesiveness
	Tying it Together

	Algorithm
	Article Similarity
	Practical Considerations

	Evaluation
	Trivia Evaluation Study
	Engagement Study

	Discussion and Future Work
	Related Work
	Conclusions
	References

