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ABSTRACT

Smartphones utilize context signals, such as time and location, to
predict users’ app usage tailored to individual users. To be effec-
tive, such personalization relies on access to sufficient information
about each user’s behavioral habits. For new users, the behavior
information may be sparse or non-existent. To handle these cases,
app category usage prediction approaches can employ signals from
users who are similar along one or more dimensions, i.e., those
in the same cohort. In this paper, we describe a characterization
and evaluation of the use of such cohort modeling to enhance app
category usage prediction. We experiment with pre-defined cohorts
from three taxonomies - demographics, psychographics, and behav-
ioral patterns - independently and in combination. We also evaluate
various approaches to assign users into the corresponding cohorts.
We show, through extensive experiments with large-scale mobile
app usage logs from a mobile advertising company, that leverag-
ing cohort behavior can yield significant prediction performance
gains than when using the personalized signals at the individual
prediction level. In addition, compared to the personalized model,
the cohort-based approach can significantly alleviate the cold-start
problem, achieving strong predictive performance even with limited
amount of user interactions.
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« Human-centered computing — Ubiquitous and mobile com-
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1 INTRODUCTION

Smartphones are increasingly seen as large-scale, non-intrusive
sensors of human activity, relating the physical and social space of
people’s lives, and how people interact with their devices. Smart-
phones have become increasingly important in our daily life; we use
them through multiple apps to communicate with friends, check
emails, take pictures, and play games, etc. Therefore, various stake-
holders in the mobile industry [3, 24] are keen to understand how
users engage with different apps, including phone operators, manu-
facturers, advertising companies, and service providers. It has been
shown in the past that many contextual features, such as time, loca-
tion, last used app and other device signals, can be used to predict
app usage [2, 13, 20, 30, 32].

Personalization of app usage prediction has been investigated in
many prior studies [2, 13, 20, 30, 32]. The ability to tailor prediction
results to a particular individual enables a wealth of opportunity
to better satisfy their particular needs. Personalized models are
typically learned from observed usage behavior and context in-
formation (such as temporal/periodic pattern and sensor signals),
which are either used directly [2, 30] or converted into a differ-
ent representation (e.g., graph) to build more general models and
improve personalization tasks [21, 42].

Despite the value of personalized models, one drawback is that
they require lots of user historical interaction information to be-
come effective. Every time a new user comes, a new prediction
model needs to be trained for a period until it can predict users app
usage correctly. The personalized prediction model can be very sen-
sitive to the data available and might not perform well for new users.
This is generally referred to as the cold-start problem. One way to
alleviate this problem is by finding cohorts of users who share com-
mon attributes or experiences with the current user. Given a user,
we can leverage the app usage behavior of other members of their
cohort(s) to enhance prediction by providing signals if insufficient
information is available for this user.

Modeling aggregate user behavior in existing app prediction
approaches is commonly performed with collaborative filtering
(CF) techniques [9], where groups of similar users (based on factors
such as liking the same item [28] or previous used apps [26]) has
been shown to work well. However, CF only exploits usage history
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information and explicit user rating feedback, ignoring the context
information when people use various apps.

In this work, different from CF, we propose using cohorts to
enhance app category usage prediction by exploiting various dimen-
sions, including contexts, user characteristics and user interactions.
Our method creates predefined cohorts covering three aspects:
demographics (e.g., age, gender), psychographics (e.g., interests,
way of living) and behavioral patterns (e.g., engagement frequency,
revisitation patterns). Rather than limiting ourselves to these pre-
defined sets, we also propose cohorts modeling methods that assign
users to a combination of cohorts. We demonstrate through exten-
sive experiments with a large-scale app usage log data that our
cohort modeling methods can yield significant improvements over
a personalized prediction model.

Finally we demonstrate that compared to existing approaches,
our proposed cohort modeling method can significantly alleviate
the cold-start problem, as it can achieve strong predictive perfor-
mance for new users, even with limited amount of user interactions
available. Moreover, users’ interpretable cohort information can
provide more transparency and expose the reasoning behind the
prediction, which has been shown to be useful in improving the
effectiveness of such recommendations [37]. Note that we do not
directly compare our proposed approach with CF in this work given
it is difficult to model all the dimensions we consider into the CF
framework. Rather, our main focus is to demonstrate the effec-
tiveness of our cohort-based approach, compared to personalized
models, especially for the cold-start scenario.

Our papers make the following contributions:

o We establish a comprehensive taxonomy to generate cohorts
using logs readily available for mobile app usage: demograph-
ics, psychographics, and behavioral patterns.

o We demonstrate that modeling user interests within these
cohorts can enhance state-of-the-art app category usage
prediction personalization methods, leading to significant
gains in the prediction performance.

e Our proposed cohort modeling method can effectively allevi-
ate the user cold-start issues compared with the personalized
prediction models, especially when limited amount of user
interaction data is available.

To our knowledge, our paper is the first to extensively utilize users’
cohort information in predicting large-scale mobile app category
usage.

2 RELATED WORK

There are three relevant areas: (1) personalization of app usage
prediction based on temporal and contextual features; (2) enhancing
the recommendation system based on user grouping method; and
(3) approaches for mobile user modeling.

Most of the previous research work on app usage prediction
(exact app or app category) is based on both the temporal patterns
and sensor signals collected, and only the personalized prediction
model is explored. Tan et al. [20, 22, 32] tried to predict the app
usage patterns based on the periodic pattern and specific using
times for each app. Huang et al. [2, 13, 30, 36] applied contextual
information in app usage prediction, like location (based on Wifi
access points) and user profile configuration (silent mode, etc.).

In those works, the number of participants is small or from one
social community (e.g. college students). Only the recent research
from [2] uses a large-scale dataset to perform their prediction model,
which is also the only work analyzed the user cold-start issues by
leveraging the app installation list as the prediction basis for new
users. Most of the other works do not work well for cold-start. In
this paper, we propose to predict users’ app category usage based
on cohorts and show that this method help alleviating the user
cold-start problem.

Collaborative filtering algorithm (CF) [1, 31] can also be used to
find people with similar interests and leverage their activities and
preferences to provide relevant recommendations. However, the
app usage prediction problem differs from traditional collaborative
filtering settings, such as the Netflix rating prediction problem, in
many aspects. First, user interaction with items such as apps is
brief and repetitive in nature, whereas items like movies and books
are usually watched/read once. Second, the user feedback of app
usage is inherently implicit in the form of item clicks, as opposed
to explicit feedback like ratings or comments. Additionally, app
usage has a temporal ordering of clicks within sessions. Lastly and
most importantly, app usage prediction must be made available
dynamically as the user interacts with the system. The cold-start
problem also exists in CF recommendation systems [6, 23, 29, 40]
and Natarajan et al [26] tried to solve it by clustering users based
on their (sparse) one-step item transition probabilities. In our work,
we propose a user cohort modeling method that goes beyond item
transition patterns.

Some researchers looked at modeling smartphone users based on
their app usage behaviour. Jones et al. [15] identified three distinct
clusters of users based on their app revisitation patterns: checkers
who exhibit brief but quick revisit patterns, waiters who are split
between short-medium revisitations and long revisitations, and
responsives who exhibit sometimes brief and sometimes long revisit
patterns. Zhao et al. [38] identified 382 distinct kinds of users from
more than 10,000 individuals. In their work, users are represented
by the average usage weight of each app category in different time
periods. Zhao et al. [16, 38] also show that the way users engage
with their apps is related to their demographics. Finally, Li et al. [18]
reported how the choice of device models impact app selection,
revealing the significance of device models on app usage.

To summarize, although many studies have been conducted on
mobile app usage prediction and mobile user modeling, no existing
works have been conducted on modeling the user cohort for the
purpose of app category usage prediction. In addition, less research
has been undertaken on the user cold-start problem. In this work,
we aim first to answer the question of whether users’ app category
usage can be predicted based on users’ cohorts information. If yes,
we then aim to answer our second question of whether the proposed
framework can help the user cold-start issue. For simplicity, we
will often refer to app usage to mean app category usage in the rest
of this paper, unless otherwise stated.

3 DATA OVERVIEW

The dataset used in this paper is collected from a mobile analytics
and advertising platform at Yahoo. We collected a sample of mobile
usage logs from a week in March 2017 from US-based users. Each



Table 1: Statistics of our dataset.

Age %users ‘ Gender %users

13-17 7.1% female 51.8%
18-24 15.9% male 48.2%

25-34  22.8% oS %users
35-54  43.9% | android = 57.3%
55+ 6.9% ios 42.5%

log consists of the user’s general app usage information, such as
demographics, operating system, timestamp, app category, and
app usage duration. All the data was anonymized by removing all
personally identifiable data prior to processing. To reduce bias from
users with low level of engagement, we restricted our sample to
those users who interacted with apps from at least five different
categories. These steps resulted into a dataset of approximately
400,000 sessions, 4,000 unique apps and 5000 users.

Table 1 shows some statistics. 51.8% of app users are female,
and most of the logs are generated by users between 35 and 54
years old. 99.8% of the devices are operated by Android or iOS.
Our dataset contains 45 app categories (consistent with the Google
Play App taxonomy [10]), ranging from social, communication to
business. The most popular app categories include social, lifestyle,
productivity, tools and utilities.

4 COHORT MODELING

One goal of this work is to extract informative and interpretable
user cohorts based on different aspects of users’ characteristics and
app usage behaviors. The cohorts are used to draw "portraits” of
users, which we believe will help predicting app category usage. A
user cohort is a group of people who share common characteristics
or experiences within a defined time-span. From previous work,
three major dimensions have been used to classify users [11]: de-
mographics, psychographics and behavioral. Demographics is the
most popular dimension; it includes age, gender, occupation, edu-
cation, religion, race, and location. Psychographics brings a better
understanding of the users as a person by measuring psychological
aspects, such as the way of living (lifestyle), interests and opin-
ions [41]. Finally, the behavioral dimension focuses on the actual
behavior of users, and includes spending/consumption habits, ses-
sion frequency, usage rate, and loyalty status. In this work, we use
these three dimensions to develop user cohorts based in a one-week
time window. The taxonomy of user cohorts is detailed in Table 2.

4.1 Demographics

The first user cohort is based on user demographics. In our case,
these are age, gender, and operating systems. Some studies have
shown that age and gender have an important impact on how
users use apps on their smartphones [38]. For example, male users
may be more engaged with sports apps and female users use more
shopping apps. We group users into two gender cohorts: male and
female, and five age cohorts: 13-17, 18-24, 25-34, 35-54 and 55+. Li
et al. [18] reported how the choice of device models can impact
the adoption of app stores, app selection and abandonment, online
time, and data plan usage. Their work revealed the significance of
device models against app usage, and suggest taking into account

the device models as an essential factor in app recommendation
tasks. We use operating system and group users into three cohorts
accordingly: Android, iOS, and others.

4.2 Psychographics

Besides demographics, the psychological characteristics of a user,
such as specific needs, preferences, and interests may also be a
strong driver of app usage. For example, a young man interested in
cooking may tend to use more recipe apps even if this category of
apps is not broadly popular within his demographic group. Such
differences between individuals and the communities to which
they belong might be reflected in app usage. Thus, considering
the psychographics of users may provide important insights in
predicting app usage. We define user cohorts from three aspects
of users’ psychographics (see Table 2): interests, the way of living,
and communities.

4.2.1 Interests. Users’ specific interests may be indicative of fu-
ture intent on app usage. For example, users who love sports might
potentially access sports apps and consume more sports-related
content than others. Therefore, it is important to consider users’
interests when predicting app usage. To group users based on their
app preferences, keeping the most popular app categories for each
user based on their historical app access frequency is a straight-
forward way of doing this. However, previous researchers [19, 27]
have found that the app popularity distribution follows Zipf’s law,
which indicates that only a few apps have high installation/usage
whereas many apps have low installation/usage. Users grouped
by their absolutely top app categories may lead to a skewed dis-
tribution meaning that most users may be classified into a few
cohorts, mostly highly popular apps, such as social-networking,
productivity, and communication.

Other than selecting the absolutely top app categories, we employ
another strategy to select the relatively most popular app categories
for each user by normalizing across all users. This strategy can prop-
erly represent users’ app category preferences as well as keeping
users’ specific preference characteristics. Specifically, the top k apps
for user u are selected based on the popularity score P(a, u) for each
app a, which is calculated based on usage frequency of that app
category for user u and the usage frequency of the corresponding
app category for all users:

fla,u)
2 flau)

u; €

P(a,u) = (1)

where app a € A, and A is the set of all the app categories engaged
by u. f(a, u) represents the usage frequency of the app category a
for user u in a given period while U is the set of all users. Given
this popularity score P(a, u), we can select the top k app categories
to represent the interests of user u. Through this normalization, the
“niche” popular app categories are used for representing that user.

Selecting appropriate k for the top k app categories can be also
crucial for the user representation. Consistent with prior results [2,
33, 34], we find that if we deem k as the number of all the app
categories used by that user, 77.3% of the users can be uniquely
identified (i.e., each of those users belongs to a user cohort that
consists of exactly that one user). To empirically evaluate this, we
present the results of the cohorts generated by varying k from 1 to



Table 2: User Cohort Taxonomy

Taxonomy Features Cohort Modeling Dimension Cohort Dimension Illustration Cohort Label Amount
Demographic "Physical” Attributes | Gender Female, Male 2
Age 13-17, 18-24, 25-34, 35-54, 55+ 5
Technographics Operation System i0S, Android and Others 3
Psychographic | Interests Absolute App Category Interests | Absolute Top K Preferred App Categories 45-961
Relative App Category Interests Relative Top K Preferred App Categories 45-1.5k
Way of Living Get up Time Late-riser, Normal, Early-bird 3
Bed Time Night-bird, Normal, Early-to-bed 3
Nocturnal phone use Heavy-use, Normal, Light-use 3
Community Temporal App Interests night communicators, evening TV watchers, weekend morning gamers, etc. 11447
Behavioural Engagement Time Spent Tourists, interested, average, active and VIP 5
Access Frequency Tourists, interested, average, active and VIP 5
Revisitation Revisitation Patterns Checkers, Waiters, Responsives 3

Table 3: Description of the cohorts generated based on dif-
ferent selected app category sets (% User Identified: percent-
age of users are uniquely identified by the selected app cat-
egories; # Cohorts: number of cohorts generated; Avg. # of
Users: average number of users in each cohort; Std: standard
deviation of the number of users in each cohort.)

Interests Representation | % User Identified | # Cohort | Avg. # of Users Std.
Absolutely Top 1 0% 45 65 142.67
Absolutely Top 2 4.0% 364 8 18.62
Absolutely Top 3 18.5% 961 3 5.01
Relatively Top 1 0% 45 62 37.82
Relatively Top 2 4.7% 582 5 5.21
Relatively Top 3 33.5% 1522 2 1.71

3, as shown in Table 3. We can observe that by selecting k equal to
3, most of the user cohorts consists of only 2-3 users whereas many
users can be uniquely identified (i.e., many cohorts only consist
of exactly one user). Therefore, we enumerate different interests
representation, setting k < 3 in the rest of the work.

4.2.2 Way of Living. We focus on when a user gets up or goes
to bed, and how actively the user uses the phone during the night
(midnight to 6 AM).

Get-up & Bed time. Murnane et al. [25] found that users’ smartphone
app usage patterns vary for individuals with different body clock
types. In this work, we focus on when a user gets up or goes to
bed. Zhao et al. [39] identified the get-up time and bed time by the
charge cycle of smartphone batteries; however, this information
is not available in our dataset. Following a similar methodology
to [39], we assume that the users start to "stop"” using the phone
before getting to sleep and pick up the phone when they get up. If
there is an idle time of phone usage for longer than 4 hours at night
(i.e., the idle time starts between 8 PM and 5 AM; ends between 4
AM and 1 PM), we identify it as the sleeping time. We then use the
timestamp of the start and end of this sleeping time respectively as
the “go-to-bed” time Tj, and “get-up” time Tg.
Nocturnal Phone Usage. This measures how actively a user uses the
phone during the night. Following the methodology in [39], the
total duration of all the active periods of app usage during night
time (between midnight and 6 AM) D, is computed as the feature
for representing nocturnal phone usage.

After obtaining those variables (go-to-bed time Ty, get-up time Ty
and nocturnal usage duration Dy), we need to further group them
into user cohorts. We are particularly interested in those traits

that make the users different from others. Following from [39], we
first normalize those discrete features using z-score. By assuming
those features follow the Gaussian distributions, we then calculate
the mean and standard deviation for each of those features. As
shown in prior work [39], those features far away from the mean
of the feature with more than one standard deviation (std) can be
utilized for representing the special user traits. Therefore, as shown
in Table 2, for each “way of living” feature, a pair of semantic labels
is generated for two ends of the feature distribution, i.e., lying
outside of the interval of (mean =+ std). For example, based on
the distribution of get-up time Tg for all users, if a user gets up
within the time period of mean =+ std, we will label his/her cohort as
“normal”. Otherwise, we will label him/her as “later-riser” if the user
gets up later than the timestamp of “mean+std” and as “early-bird”
if he/she gets up earlier than the timestamp of “mean-std”.

4.2.3 Communities. Several studies have clustered users into
different communities based on their temporal app usage patterns.
For example, Zhao et al. [38] identified 382 distinct kinds of users
using their clustering method based on the usage frequency of
different app categories during specific time periods. Within their
proposed clustering method, they identified different types of users
and ultimately label them with a community label, such as night
communicators, evening learners and car lovers. Different from
interests described in Sec. 4.2.1, the communities capture the more
fine-grained temporal app usage patterns.

In our work, we utilize the same methodology to assign each
user to different communities. Based on our dataset, each user is
represented by a vector C, of 45 (categories) x 4 (time periods) x
2 (weekends and workdays) for a total of 360 dimensions. By ap-
plying the best performing k-means-MeanShift hybrid clustering
algorithm described in [38], we obtain a total of 114+7 clusters.!
This k-means-MeanShift clustering algorithm combines the bene-
fits of multiple standard clustering algorithms, is computationally
feasible, and finally is able to automatically determine the ultimate
number of clusters. We find that our clustering results are similar
to the findings in [38] that many meaningful communities exist in
our clusters, such as night communicators, evening TV watchers
and weekend morning gamers.

!Since we use 5-fold cross validation in our performance evaluation, different number
of clusters are generated in different folds.



4.3 Behavioural

The third dimension is based on behavioral patterns. We consider
two aspects of users’ behavioral characteristics, which we show in
Table 2: engagement and revisitation.

4.3.1 Engagement. Within the context of web browsing, Lehmann
et al. [17] created five types of user groups based on their frequency
of visiting the site over a month: tourists, interested, average, active
and VIP users. They identified that the proportion of specific types
of users based on their engagement will be different across web-
sites. In this work, we also hypothesize that users with different
engagement levels may behave differently in terms of app usage.
Additionally, we measure not only users’ engagement in terms of
how frequently they access apps, but also the more fine-grained
total time spent (i.e., total dwell time). The latter represents the
total duration of users accessing mobile apps in the given period.

Following the five-level engagement level definition in [17], we
propose the following strategy for defining users’ engagement co-
horts based on their mobile app behavior patterns. We group users
into five different engagement cohorts of duration and frequency, re-
spectively, by using the quantiles at 20%, 40%, 60%, 80% and 100% as
the breakpoints, resulting in those five cohorts: tourists, interested,
average, active and VIP.

4.3.2 Revisitation. Jones et al. [15] present a revisitation analysis
of smartphone use. They propose that users could be clustered into
three different types based on their revisitation patterns, where
a revisitation curve for a particular user is constructed by con-
sidering the in-between duration in launching any app on their
phone. They grouped the users based on the revisitation curves into
three user cohorts: checkers (users exhibiting brief revisit patterns
lightly skewed towards fast revisitation of less than 4 hours), wait-
ers (users exhibiting longer revisit patterns longer than 16 hours),
and responsives (users exhibiting a hybrid of brief and long revisit
patterns).

Following [15], we use an exponential scale for revisit interval
bins, which are 1, 2, 4, 8, 16 and 32 minutes; 1, 2, 4, 8, 16, 32 hours
(i.e 1.3 days), 64 hours (i.e. 2.6 days), 128 hours (i.e. 5.3 days), and
above (i.e >5.3 days). A revisitation curve characterizes a user by its
15-dimensional vector Ry, where each dimension corresponds to the
frequency of revisits within the corresponding bin. These curves are
like a "signature” of users’ behavior in launching mobile apps. We
iteratively apply k-means for a varying number of clusters and use
within-groups sum of squares to plot the variations as a function
of the different number of clusters. We then pick the "elbow" of the
curve as the optimal number k of clusters. Based on this simple k-
means method, we identify a substantial trichotomy of user cohorts
within their revisitation patterns: checkers (which accounts for
39.6% of users), waiters (13.5%) and responsives (46.8%).

5 APP CATEGORY USAGE PREDICTION
BASED ON COHORT MODELING

In this section, we introduce our approach of using cohort model-
ing for the purpose of app category usage prediction. We start by
formalizing the prediction problem, and then discuss how to assign
the cohort information when a new user comes. To assign users
into cohorts of different granularity, we also describe how we build

combined user cohorts. Finally, we evaluate the performance of
the proposed prediction method, including for the user cold-start
problem.

5.1 Problem Formulation

In our work, we aim to predict the app category a new user will use
based on their cohort information. Our aim is to overcome the data
sparsity issue and to guarantee efficient real-time prediction. Each
user can be characterized by his/her cohort information, i.e., demo-
graphics, psychographics, and behavioral patterns. For each user,
given the current time (time of day and day of week) and his/her
cohorts information, we want to predict the app category he/she
will use. This prediction task can be formalized as a multi-class
prediction problem. There are K = |A] classes for this prediction
task, where A is the set of all app categories in the dataset.

The app category usage prediction problem is formally de-
fined as follows: Given a list of app categories {a1, az, ..., a; }, the
users’ cohorts information C and temporal context T, the problem
of app usage prediction is to find an app category a that has the
highest probability of being used under C and T. Specifically, we
aim to solve:

a = argmax P(aq;|C, T)
a;€eA

5.2 User Cohorts Assignment for New Users

Since the user cohort based approach aims at addressing the user
cold-start problem, we split the training and test set based on users
instead of log entries. In the training set, the users are assigned
to the specific cohorts based on their usage logs. For example, the
community cohorts are generated based on the clustering results
of users in the training set. During the test stage, for all test users
whom have not been seen by the system before, we assign those
users to existing cohorts in the training set and then proceed to the
prediction task. During the assignment process, we need to compare
the new users with all "old" users in the vector space, so we first
introduce the representative vectors for representing users’ cohorts
information as vectors. For scalar based cohort: e.g., demographics,
the representative vector refers to the one-hot encoded vector of
the categorical scalar. For cluster-based cohorts: e.g., community
and revisitation, the representative vector is the vector used in clus-
tering. We then propose three assignment approaches to assign the
test/new users to the most accurate cohort within all the different
cohorts taxonomies as described in Section 4.

5.2.1 Nearest centroid classifier (NCC). If we want to deter-
mine which existing cohort a new user belongs to, the straight-
forward way is to find the nearest cohort. Therefore, we propose
to use the nearest centroid classifier [35] as the first assignment
methodology, which is a classification model in machine learning
that assigns observations to the class of samples whose centroid
is closest to the observation. In our scenario, given existing users’
representative vectors {Z1, Y1), ... (X1, yn)} with cohort labels
y; € Y, we compute the per-cohort vectors:



where Cj is the set of indices of samples belonging to cohort label
I € Y; the assignment function for the cohort label assigned to a
new user? is: -
§j = argmin |[7 — x|
ley

5.2.2 K-nearest neighbor classifier (KNNC). The second ap-
proach is to apply the k-nearest neighbor (KNN) [8] rule, which
is one of the most straightforward non-parametric techniques in
pattern classification. The basic idea of k-nearest neighbor classifier
is: an object is classified by a plurality vote of its neighbors, with the
object being assigned to the class most common among its k nearest
neighbors. Here we set k = y/n, where n is the amount of unique
cohort labels. Similar to NCC, representative vectors are used when
calculating the distance between two users. More specifically, given
anew user x” and a similarity metric d based on Euclidean distance,
KNN classifier performs the following two steps: (1) It runs through
the whole training set computing d between the new user x” and
each user in the training set. We state the k users in the training set
that are nearest to x” as the set C. (2) It then estimates the condi-
tional probability for each cohort label, that is, the fraction of users
in C with that given cohort label:

g =argmax P(y = JIX =) = £ > 159 = )
Jey ieC
where I(x) is the indicator function which evaluates to 1 when the
argument x is true and 0 otherwise. Finally, the new user x’ gets
assigned to the cohort label with the highest probability.

5.2.3 Classifiers trained based on the existing cluster labels
(RF). Given the NCC assignment, some of the labels will be as-
signed based on the centroids of clustered results. However, assign-
ing new points based on distance in a clustering algorithm is com-
plex because the results of a clustering algorithm may be imperfect;
they only present a snapshot of a (hopefully good) segmentation
within the current data. With more data coming in, the cluster may
change. Therefore to make the assignment more robust given a par-
ticular clustering segmentation, we can train an additional classifier
where the resulting clusters are treated as different classes. In that
way, we can account more intuitively for the non-robustness of
the clustering labels. Besides, as we expect the clustering to reflect
“some structure”, it is a cheap and straightforward way to encap-
sulate that structure. Following this, the classifier learns P(c|x)
based on users’ representative vectors and corresponding cluster
labels. When a new user x’ appears, we can directly predict which
class the new user belongs to instead of assigning him/her based
on distance or neighbors. So here, we propose to use an additional
classifier based on the Random Forest algorithm, which is efficient
in assigning the cohort label to new users:

i} = argmax P(c|x")
ceY

5.3 Combination of Multiple User Cohorts

Besides predicting users’ next app category solely based on one
type of cohorts, we also want to consider multiple types of cohorts
together. For example, as shown in Figure 1, a combined cohort with
different types of demographic cohort features could be generated
to describe a user. This combined cohort would have 30 different

Combined Cohort Representative Vector

[ o 1t Jo ©o 1 o oJ]o 1 o]
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Figure 1: Structured representative vector of combined
user cohorts: combining age, gender and operation system
groups would potentially result in 30 different cohorts.

labels since there are potential 30 different compositions based on
age, gender, and operating system cohort labels. For instance, we
can observe one of the combined cohorts in Figure 1: “Android male
user cohorts aged 25-34”. It is possible to generate a new cohort
based on a combination of any cohort dimensions listed in Table 2.

The cohort assignment for new users within these combined
cohorts follow the same methodologies described in Section 5.2. The
representative vectors x are updated by concatenating the original
vectors x; of each selected cohort:

x = [x1,%2, .. Xi],i € S¢

where S is the set of selected cohorts to be combined. Figure 1
illustrates the generation of such new representative vector.

5.4 Experimental Results

In this section, we firstly empirically demonstrate how our proposed
cohorts can be used to improve the prediction of users’ app category
usage. Secondly, we investigate whether our proposed approach
can help addressing the user cold-start issue when compared with
other prediction mechanisms.

5.4.1 Experimental Setup. We apply 5-fold cross-validation to
evaluate each model. At each time, we split all the users into train-
ing, validation and test set: the logs of three-fold of the users are
used as the training set, one-fold is validation set and the remaining
one-fold users are used as the test set.

5.4.2 App Usage Prediction. Our goal is to predict which app
category the user will use next. We use a set of state-of-the-art
algorithms to build models for our prediction problem: (1) XGBoost
(XGB) [4], as an example of ensemble learning method; (2) K Nearest
Neighbours (KNN) [5], as an example of the non-parametric method
for classification; (3) L2-regularized Logistic Regression(LR) [12],
as an example of linear classifier. The parameters in each model,
e.g., Kin KNN, the number of used trees, the maximum depth of
the trees and the learning rate are tuned on the validation sets.
The features include the user cohorts and the temporal context
(different hours of a day and days of a week). Additionally, we
use the prediction model only based on context features as our
benchmark, which takes all the users as they are "the same" (from
one cohort). We report four metrics with 5-fold cross-validation:
accuracy (acc), precision (pre), recall (rec), and F1-measure (F1). We
test the prediction performance of the proposed user cohorts based



Table 4: Measurements of next app category prediction
based on different cohorts information. All the results are
statistical significant (p < 0.01) using the two tailed t-test
compared to the temporal context only baseline.

| Measurements
User Cohorts # Cohorts | Assignment | acc pre rec F1
Context Baseline ‘
Hour + Weekday | - | - | 0416 0173 0416 0244
1. Single Cohort ‘
(a). Demographics ‘
Age 5 - 0.441 0.197 0.441 0.272
Gender 2 - 0.443 0.197 0.443 0.272
Operating system 3 - 0.447 0.234 0.447 0.291
(b). Psychographics ‘
Interests: Top1-Absolutely 45 - 0.686 0.666 0.686 0.665
Interests: Top2-Absolutely 364 NCC 0.559 0.515 0.559 0.496
Interests: Top3-Absolutely 961 KNNC 0.467 0.387 0.467 0.362
Interests: Top1-Relatively 45 - 0.555 0.528 0.555 0.510
Interests: Top2-Relatively 582 NCC 0.547 0.494 0.574 0.485
Interests: Top3-Relatively 1522 KNNC 0.418 0.393 0.418 0.402
Way of Living: Sleep Time 3 B 0.440 0.203 0.440 0.270
Way of Living: Get-up Time 3 - 0.439 0.206 0.440 0.271
Way of Living: Nocturnal 3 - 0.443 0.197 0.443 0.272
Communities | 115 | NCC | 0572 055 0572 0.517
(c). Behavioural ‘
Time Spent 5 0.444 0.222 0.444 0.286
Frequency 5 - 0.444 0.222 0.444 0.286
Revisitation Pattern | 3 | NCC | 0444 0219 0444 0283
II. Combinatory Cohort ‘
(d). Demographics ‘
Age + OperatingSys 15 NCC 0443 0255 0443  0.298
Gender + OperatingSys 6 NcCC 0.447 0.240 0.447 0.291
Age + Gender 10 NCC 0.436 0.206 0.436 0.271
Age + Gender + Operat- 20 NCC 0.436 0.255 0.436 0.298
ingSys
(e). Psychographics ‘
Getup + Nocturnal 6 NCC 0.437 0.236 0.437 0.280
Sleep + Get-up + Nocturnal 17 NCC 0.431 0.248 0.431 0.291
Top1-Absolute + Community 363 NCC 0.682 0.662 0.682 0.660
Top1-Absolute + Nocturnal 80 NCC 0.681 0.661 0.681 0.659
Top1-Relative + Community 489 NcCC 0.577 0.565 0.577 0.543
Top2-Absolute + Community 1034 KNNC 0.572 0.529 0.572 0.514
Top1-Relative +Nocturnal 88 NC 0.548 0.519 0.548 0.505
(f). Behavioural ‘
Time Spent + Revisitation 12 NcCC 0.439 0.244 0.439 0.295
Frequency + Revisitation 12 NcC 0.439 0.244 0.439 0.294
(g). Across Taxonomies ‘
Age + OperatingSys + Revisi- 69 NCC 0.430 0.290 0.430 0.329
tation
Age + OperatingSys + Time 96 NcCC 0.426 0.292 0.426 0.332
Spent
Age + OperatingSys + Topl- 649 NCC 0.600  0.552  0.600  0.565

Absolute + Time Spent

on each cohort taxonomy individually and then when combined.
We consider several combinations.

Table 4 presents the results. For the combined user cohorts (Ta-
ble 4.IT), since there are a large number of compositions across dif-
ferent cohort taxonomies, we only report the results of the top per-
forming combinations, on which we test the combinations among
any two, three or four different cohorts. Note that we also only
report those combinations for which we observe a performance

?Due to the limited space, only the results of XGB are reported, which performs the
best among all the three classifiers.

boost compared to using any individual cohort feature. For the
different cohort assignment methods we employ for new users (see
Section 5.2), we only report the one with the best performance.’

Firstly, we find that compared to the context-only baseline ap-
proach, all the cohort based models achieve better performance
on all metrics; all those improvements are found to be statistically
significant (p < 0.01) through a two-tailed t-test. This demonstrates
that not surprisingly, incorporating user characteristics on top of
the temporal context help to improve app category usage prediction.

Secondly, we investigate more specifically the gains obtained
by the single cohort models (Table 4a-c). We can observe that in
general the psychographic cohort models (Table 4b) perform better
than the demographic (Table 4a) and behavioural (Table 4c) cohort
models by a large margin. When looking at the psychographic
cohort models, we can find that the user interests cohort based
on the “absolutely top 1 app category”, and “communities” are the
best predictive models. This indicates that users that have common
interests or belong to the same communities may behave more
similarly in their app usage behavior, which is not only constrained
to their past, but also their future app usage. However, compared
to the baseline, we observe only marginal improvements on the
“way of living” (Table 4b), behavioral (Table 4c) and demographic
(Table 4a) cohort models. This is not surprising as most of those
models contain only a small number of cohorts (3-5) and are not
sufficiently discriminative.

Finally, when examining the combined cohorts (Table 4d-g), we
find that they generally perform better than when using any one of
them respectively. For example, all of the “way of living” cohorts
outperform any of them when individually used. When combining
demographics and revisitation behaviour patterns (Table 4g), we
observe an increase of 10% performance improvement, compared
to using demographics only (Table 4d). However, it is worth not-
ing that combining “interests” with any other cohorts (Table 4e)
would result in only marginal improvements and sometimes even
inferior performance. This implies that enriching the cohorts with
additional information might not always necessarily help. Another
interesting observation is that most of the time, the simple Nearest
Centroid Classifier (NCC) cohort assignment approach outperforms
KNCC and RF approaches.

5.4.3 User Cold-Start Problem. In this section, we focus on ana-
lyzing whether the cohort-based prediction model can help solving
the user cold-start problem. We adopt the best performing cohort
model (see Table 4) for the rest of the experiments.

The baseline approaches we compare against are both person-
alized and population-based prediction models. Although there
are many personalized models (see Section 2), some of them are
not applicable because they use additional information. We select
CPD [32], EWMA [32], and BN [42] as our comparative baselines
for personalized models as they can be used with our dataset. CPD
(Cumulative Probability Distribution) computes the probabilities
of each used app in all the specific time slots based on historical
app usage time series for that user, and selects the app with the
highest probability at the prediction time based on its time slot.

3We use ‘-’ in Table 4 to denote such scenario when there is no single winner for
the three assignment approaches (i.e., all those methods result in the identical cohort
assignment).
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Figure 2: Performance comparison among different predic-
tion models with limited amount of historical user logs.
Three personalized baseline models: CPD [32], EWMA [32]
and BN [42], one population-based baseline model [7] and
our proposed cohort model.

EWMA (Exponentially Weighted Moving Average) replaces the cu-
mulative probability in CPD with exponentially weighted moving
average [14] so that the newer data points have higher influence
in the prediction. BN [42] is a Bayesian Network model that relies
on both app usage and time context and calculates a linear com-
bination of the user’s last used app and the second last used app
for the final prediction. Regarding the population-based prediction
models, following [7], we generate the baseline model based on our
available predictive features and utilize random forest to combine
all those features for the next app category prediction. We combine
a set of extensive features that could be extracted from our dataset,
which include hour, weekday, last used apps, historical popularity
of users’ app usage in different time windows, one hour, one day
and all history, and periodicity (intervals between app usage) [22].

To explore whether the user cohorts based methodology perform
better especially for new users (for which there are limited inter-
action data), we randomly select 20% of the users in our dataset,
and use them to simulate the new users by increasing the num-
ber of interaction data (logs) available we consider for each user.
Specifically, we extract different amount of logs from 5 to 50 for

each user to simulate various severity of the cold-start problem. We
hypothesize that models that handle well the cold-start problem
tend to perform competitively even with very limited amount of
user logs.

Figure 2 presents the prediction performances of all baseline
models and our proposed cohort-based prediction model, given
different amount of historical logs available for the test users (x-
axis). The results are averaged across all the test users. Firstly, we
can observe in Figure 2a that when the amount of user interactions
is limited, all personalized models perform worse (accuracy is below
35%) than the population baseline models and the cohort models.
CPD is the worst for the personalized model when there are logs,
followed by EWMA and BN. However, both population and cohort
models can achieve over 50% accuracy even with the limited amount
of historical user data. Secondly, we observe from Figure2b that
only the cohort-based model achieves over 90% of the best accuracy
when only 10 entry logs are considered. The performance steadily
increases as more and more logs are available. This demonstrates
that our proposed user cohort based model outperforms both the
personalized models and the population-based model for the user
cold-start problem.

6 CONCLUSIONS

In this study, our goal was to identify meaningful user cohorts
information to help with the app category usage prediction problem.
We show that besides personalized prediction approaches, users’
app category usage behavior can be predicted based on cohorts
information. Based on our proposed taxonomies of user cohorts
modelling, we found that psychographics (interests and community)
perform best. Additionally, we identify that our proposed user
cohorts based prediction outperforms both the personalized and
population-based models on the user cold-start problem.

Through our study, we demonstrated the value of cohorts, es-
pecially for new users. This is promising as cohorts information
could be used not only on their own but also in combination with
other signals as they become more present. For a new user with-
out much interaction data, general cohorts information such as
interests or community could be collected, e.g., a user could label
themselves as car lovers or young parents. Users’ app category
usage could be predicted with relatively high accuracy using this
basic cohort information. The cohort labels can also be utilized to
explain the prediction model, enabling the recommendation to be
more transparent and interpretable [37].

There are several limitations of our work, which we would like to
address in future work. Firstly, our dataset only consists of relatively
short-term app usage and it would be interesting to study signals
that could relate to long-term characterizations of user cohorts.
Secondly, we mainly focus on next mobile app category prediction
in our work. Our method is general while it is worthwhile extend-
ing this to further investigate our cohort-based methods on next
app prediction [2]. Finally, the cohort taxonomy we define in our
work is only a first step proof-of-concept, and can be refined with
more fine-grained cohorts when relevant interaction or user profile
information become available.
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